THE OPEN UNIVERSITY OF SRI LANKA

FOUNDATION PROGRAMME IN TECHNOLOGY - LEVEL 02

FINAL EXAMINATION 2010

CEX2312 - ENGINEERING PROPERTIES OF MATERIALS

Time allowed: 3 Hours

Index Number.....

Date: 21st March 2010

Time: 9:30-12:30 hrs.

Note: The Periodic table is given on the last page for reference.

PART A:

Answer all questions.

Each question carries 3 marks and the mark for Part A makes up 30% of the total mark. Part A should be detached from the question paper and attached to the answer script.

From question 1 to 5 select the most appropriate answer and underline.

1. A body is acted upon by a force F which varies with time t as in figure al. Determine the graph which best represents the velocity (v) and time t variation of the body?

a.

Figure a1

- d.

 v
 t
- 2. Which of the following properties of solid would change if it was transported from earth to moon?
 - a. mass

c. density

b. volume

d. weight

. Which of the following atoms has the	largest second ionization energy?
a. F	c. Na
b. Ne	d. Mg
1. In a simple pendulum experiment, the	e length l is varied and the period T is measured. To find
gravitational acceleration (g) it is best	to plot
	$oxed{1}$. The $oxed{1}$
a. l against T	c. $l^{\overline{2}}$ against T ²
b. l against T ²	d. l^2 against T
5. Under ordinary room temperature con	nditions, the greatest number of elements are
a. gases.	c. metallic solids.
b. liquids.	d. nonmetallic plasmas.
From question 6 to 10 answers sho	ould be written in the space provided under each
question.	
6. Conductivity of semi conductors in	creases with temperature, while the good conductors
decrease marginally with increase o	f temperature. <u>Explain</u> why.
the contract of the contract o	
· ·	
7. Describe the process of writing wit	h chalk on a black board in terms of friction and wear.
•	
·	
	ler of increasing atomic radius. Na, Al, P, Cl, Mg
9. Shaking your wet hands can remove	
•	
	g first ionization energy; F, K, P, Ca, Ne
	g mst totuzation energy, 1, 1, 1, Ca, the

PART B:

Answer any 4 questions.

Each question carries 17.5 marks and the mark for part B makes up 70% of the total mark.

1.

- a. The Bernoulli's equation expresses the sum of the three heads (i.e. pressure head, velocity head at the elevation head) as $\frac{p}{\rho g} + \frac{v^2}{2g} + z = c$ and the sum takes a constant c. The terms in this equation are p pressure; g acceleration due to gravity; ρ density of water.
 - i. <u>Determine</u> the SI units for z.
 - ii. Express g in terms of cgs units.
 - iii. Derive the SI units for v.
- b. The volume of a small cylindrical object can be found by taking measurements of the diamete and height h of the cylinder using a vernier caliper. The observed readings while measuring diameter and height of the cylindrical object are given in figure 1b (1) and figure 1b (2) respectivel

Figure 1b(2)

- i. Determine the least count of the given vernier caliper.
- ii. <u>Determine</u> the diameter of the cylindrical object.
- iii. Determine the height of the cylindrical object.
- iv. Calculate the volume of the cylindrical object.
- v. If the cylindrical object is made of aluminium (density = 2.7g/cm³), <u>determine</u> the mass of it.

- c. A piece of alloy of mass 86 g suspended by a spring balance at the top is totally submerged in water. The spring balance reads 73 g when the piece of alloy is immersed in water.
 - i. Sketch the free body diagram for the piece of alloy indicating all the forces.
 - ii. <u>Compute</u> the up-thrust exerted by the water on the piece.
 - iii. Determine the volume of the piece of alloy.
 - iv. Compute the density of the alloy.

2.

- a. In an experiment to measure the Young's Modulus for steel, a long and thin steel wire is suspended vertically and loaded at the free end. In such an experiment;
 - i. Explain why a long and thin wire is selected.
 - ii. Explain how you can measure the extension and diameter of the wire accurately.
 - iii. <u>Explain</u> the advantages that are gained by describing the elastic properties of solids in terms of stress and strain rather than force and displacement.
 - iv. Sketch the graph that you would expect to obtain in such an experiment showing the relation between the applied load and the extension of the wire.
 - v. Show how it is possible to use the graph to determine the Young modulus for the material of the wire. (State your assumptions)
 - vi. A uniform steel wire of length 4 m and cross sectional area of 3×10^{-6} m^2 is extended by 1 mm. <u>Calculate</u> the energy stored in the wire if the elastic limit is not exceeded. (Young's modulus of steel = 2.0×10^{11} Pa)
- b. Test pieces of two metal alloys of identical size and shape were subjected to tensile strength tests up to fracture X, and the stress strain diagrams which were obtained are shown in figure 2(b)1.

Figure 2(b)1

- i. Determine which material has the greater tensile strength. Explain your answer.
- ii. Find which of the two materials is more ductile. Explain your answer.
- iii. Determine which material exhibits greater toughness. Explain your answer.

C.

- i. List two instances where friction is made use of in everyday life.
- ii. List two instances where certain measures are taken to avoid friction.
- iii. Sketch a tyre of a motor vehicle that is moving forward; indicate the following forces acting on the tyre; the weight (P), the normal reaction (R), the frictional force (F)
- iv. Is the friction force acting on the tyre greater than μR or less than μR ? Explain your answer.

3.

a.

i. Using appropriate diagrams, <u>describe</u> the way in which the movement of electrons between the atoms produces ionic bonding in potassium fluoride.

Explain why potassium fluoride;

- ii. has a high melting point
- iii. dissolves readily in water
- iv. does not conduct electricity at room temperature
- v. does conduct electricity at 8000 C
- b. From the first twenty elements of the periodic table, choose the element or elements which:
 - i. has the largest ionization energy
 - ii. forms a 1- ion with the same electron configuration as neon.
 - iii. forms a 2+ion which is iso-electronic with argon.
 - iv. is a metal which forms an oxide with the formula X_2O .
 - v. Forms an ionic chloride with the formula XCl.
 - vi. Forms a giant atomic Oxide, XO_2 .
 - vii. Forms a 2+ion with the electron configuration 1s2 2s2 2p6
 - viii. Fits the equation

$$XCl_5 \longrightarrow XCl_3 + Cl_2$$

- c. Show the locations of the following, in the outline of the periodic table given in fig.3(c).
 - i. alkali metals
 - ii. alkaline earth metals
 - iii. halogens
 - iv. the noble gases
 - v. 2 metalloids

Figure 3(c)

4.

a. Table 4(a) shows some of the mechanical properties of a wide range of materials.

	V Modulus 109	Tensile strength 106	Elongation %
Material	Young Modulus 109	Pa	
	Pa		35
Steel	200	250	
Copper	120	150	45
Aluminium	70	60-120	45
Glass	71	100(about)	0 (about)
Concrete	20-40	4	
Perspex	3.4	55-70	2-10
PVC	2.5	60	2
Polystyrene	3.5	40	2.5
Nylon		70	60-300
Rubber(natural)	1 (25% elongation)	32	850

Table 4(a)

- i. Aluminium and glass have almost the same values of the Young's modulus and tensile strength. Why is glass, which is much cheaper to produce, not used in place of aluminium in load bearing applications?
- ii. Although concrete is used in heavy load bearing applications, the table shows a very low value of tensile strength in Concrete. How do you overcome this disadvantage?
 <u>Explain</u> your answer.
- iii. Compare the stiffness between Aluminium and PVC. Explain your answer.
- iv. Roughly <u>draw</u> stress strain diagrams for glass and steel.
- v. <u>Explain</u> the type of bonding present in PVC. Hence explain why it can be used as an insulator.
- vi. <u>Explain</u> the following observation. 'Crystals of salts fracture easily, but metals are deformed under stress without fracturing'

Ъ.

- i. <u>List</u> three uses of plastics.
- ii. <u>Identify</u> the properties that make plastic a suitable material for the uses selected above.
- iii. What are the properties of plastics that make them a possible threat to the natural and human environment?
- iv. <u>Discuss</u> what measures you would take to reduce the threat posed by plastics to the environment.

- a. Copper is a pure metal. It is the world's third most important metal, in terms of volume of consumption.
 - i. State the electronic configuration of copper.
 - ii. <u>Describe</u> the bonding in copper metal and hence explain why it is selected for the following applications.
 - A. Copper wire
 - B. Car radiator core
 - C. Electric motor windings
 - D. Domestic hot water cylinders
 - iii. <u>Give</u> two examples where the addition of another material improves some desirable property of copper. For each example list the material added and the property improved.
- b. Silicon Carbide is a ceramic material of simple composition and structure. It is a well known abrasive material.
 - i. <u>Determine</u> the electronic configuration of Si and C.
 - ii. <u>Describe</u> its structure and bonding.
 - iii. Considering the bonding in Silicon carbide, explain its usage as an abrasive.
- A good hacksaw blade costs around sixty rupees. You could also purchase a cheaper version for five rupees.
 - i. <u>Explain</u> how such blades generally fail.
 - <u>Compare</u> the differences in engineering properties for the two types.
 - iii. <u>List</u> two instances in which the expensive type is preferred.

6.

- a. A titration experiment was carried out by a student, to find stoichiometry of the reaction between HCl and Na₂CO₃. Titration was performed by a 2.9929 g sample of impure Sodium Carbonate dissolved in water and titrated to a methyl orange end point with 0.4150 M HCl. If 33.75 ml of the acid is used for the reaction;
 - i. Describe the function of an acid base indicator.
 - ii. Write down the equilibrium equation for the above case.
 - iii. <u>Determine</u> the percent by mass of the sodium carbonate in the sample.
 - iv. Consider the titration experiment that you have performed in the laboratory. What would happen and how would the results be affected by the following errors?
 - A. A few drops of acid are added after the indicator changes colour.
 - B. The acid is less concentrated than you thought.
 - C. You forget to add the indicator.
 - D. You don't swirl the flask to mix its contents thoroughly.

- b. The Cathode Ray Tube led to the discovery of electrons within the atom.
 - i. <u>Explain</u> how a beam of electrons can be produced in a vacuum tube and describe an arrangement by which the beam may be deflected by a magnetic field.
 - ii. Millikan succeeded in measuring the electric charge of an electron using observations made on charged oil droplets. <u>Describe</u> the experimental set up used and the major conclusions reached by him.

The Periodic Table of the Elements

					1.0	,																					
		· -				(223)	Fr	87	Cesium 132.90545	Cs	55	Ruthidium 85.4678	Rb	37	Potașsium 39,0983	X	19	Sodium 22.989770	Na	11	6.941	<u>L</u>	w	Hydrogen 1.00794	H	U	7
						(226)	Ra	88	Barium 137,327	Ва	56	Strontium 87.62	Sr	38 8	Calcium 40.078	Ca	20	Magnesium 24.3050	Mg	12	Beryllium 9.012182	Be	4				
							Ac	89	Lanthanum 138.9055	La	57	Yttrium 88.90585	K	39	Scandium 44.955910	Sc	21			•							
. .						(261)	Rf	104	Flathlum 178.49	Hf	72	91.224	Zr	40	Titanium 47.867	Ti	22	-						-			
Th	90	Cerium 140.116		58		(262)	Db	105	Ծառուհյար 180.9479	Ta		Ninhium 92,90638			Vanudium 50.9415	V	23										
Pa Protectinium	91	Praseodymium 140.90765	Pr	59		(263)	3 S	106	Tungsten 183.84	W	74	Molybdenum 95.94	Mo	42	Cliromium 51.9961	Cr	24				•		•				
Umnium	92	Neodymium 144.24	Z	60		(262)	Bh	107	Rhenium 186.207	Re	75	Technetium (98)	Tc	43	Manganese 54.938049	Mn	25		÷+	. <u></u>				:			
Neplunium	93	Promethium (145)	Pm	61		(265)	Hs	108	Osmlum 190.23	Os	76	Ruthenium 101.07	Ru	44	fron 55,845	Fе	26										
Pu	94	Samarium 150.36	Sm	62		(266)	Μt	109	1ridium 192.217	Ħ	77	Rhodium 102,90550	Rh	45	Cabalt 58.933200	Co	27								• .		
Am	95	Europium 151.964	Eu	63		(269)		110	Platinum 195,078	Pt	78	106,42	Pd	46	Nickel 58,6934	Z	28										
Curium	96	Gadolinium 157,25	G	64		(272)			Gold 196,96655	Au	79	107.8682	Ag	47	Copper 63.546	Cu	29					F					
Berkelium	97	Terbium 158.92534	Ъ	65		(277)		112	Mercury 200.59	Hg	80	Cadmium 112.411	Cd	48	Zine 65.39	Zn	30		•.			:					
Californium	98	Dysprosium 162.50	Dy	66				113	Thallium 204.3833	I	81	114,818	In	49	Gallium 69.723		31	Aluminum 26.981538	Al	13	Baran 10.811	В	S				
Einsteinium	99	Holmium 164.93032	Ho	· 67				114	Lend 207,2				Sn	50	Germanium 72.61	Ge	32	Silicon 28.0855	Si	14	Carbon 12.0107	C	6				
Fermium	100	Erblum 167,26	Er.	68					Bismuth 208,98038	Ві	83	121.760			7		33	Phesphorus 30.973761	P	15	Nitrogen 14,00674	Z	7				
Mendelevium	101	Thulium 168.93421	Tm	69			. '		Polonium (209)	Po	84	127.60	Te	52	Selenium 78,96	Se	34	Sulfur 32,066	Ø	16	Oxygen 15,9994	0	∞				
Nobelium	102	Yuerbium 173.04	ΥЪ	70					Astatine (210)	At	85	126,90447	H	53	Bromine 79,904	Br	35	Chlorine 35,4527	Ω	17	Fluorine 18.9984032	¥	9			-	• ,
Lawrencium	:103	Lutelium 1 74.967	Lu	71					Radon (222)	Rn	86	Xenun 131.29	Xe	54	Krypton 83.80	Kr	36	Argan 39.948	Ar	18	Ncon 20.1797	100	10	4.003	He	2	
		-																									•