The Open University of Sri Lanka

Foundation Course in Science – Level 02

Open Book Test 2013/2014

PAE/PAF 2201 - Combined Mathematics I

Duration: - One and half Hours.

Date:-11.12.2013

Time:-1.30p.m-3.00p.m

- 1) (i)
 - (a) Prove that

$$\frac{Sin(A-B)}{CosACosB} + \frac{Sin(B-C)}{CosBCosC} + \frac{Sin(C-A)}{CosCCosA} = 0.$$

(b) If Cosy = Sin(x + y), then prove that

$$\tan y = \sec x - \tan x$$
.

(ii) Find the general solution of the equation

$$\tan x + \tan 2x = \sqrt{3}(1 - \tan x \tan 2x).$$

- (iii)Let $f(x) = 2\sin^2\left(\frac{x}{2}\right) + 2\sqrt{3}Sin\left(\frac{x}{2}\right)Cos\left(\frac{x}{2}\right) + 4Cos^2\left(\frac{x}{2}\right)$. Express f(x) in the form $aSin(x+\theta) + b$ where a(>0) and $\theta(0 < \theta < \frac{\pi}{2})$ are constant to be determined, Hence find the general solution of the equation f(x) = 5.
- 2) (i) Let $f(x) = px^3 + qx^2 11x + 6$, where $p, q \in \mathbb{R}$ if (x-1) is a factor of f(x), and the remainder when f(x) is divided by (x-4) is -6, find the values of p and q, Also find the other two linear factors.
 - (ii) Let α and β be the roots of the equation $x^2 + bx + c = 0$ and γ and δ be the roots of the equation $x^2 + mx + n = 0$ where $b, c, m, n \in \mathbb{R}$.
 - (a) Find $(\alpha \beta)^2$ in terms of b and c, hence write down $(\gamma \delta)^2$ in terms of m and n. Deduce that if $\alpha + \gamma = \beta + \delta$, then $b^2 - 4c = m^2 - 4n$.

3) (i) Let $U_r = \frac{3(6r+1)}{(3r-1)^2(3r+2)^2}$ for $r \in \mathbb{Z}^+$ and let $S_n = \sum_{r=1}^n U_r$ for $n \in \mathbb{Z}^+$. Find the values of the constant A and B such that

$$U_r = \frac{A}{(3r-1)^2} + \frac{B}{(3r+2)^2}$$
 for $r \in \mathbb{Z}^+$.

Hence show that $S_n = \frac{1}{4} - \frac{1}{(3n+2)^2}$ for $n \in \mathbb{Z}^+$.

Is the infinite series $\sum_{r=1}^{\infty} U_r$ convergent?

Find the value of $\sum_{r=1}^{\infty} U_r$.

- (ii) (a) The complex numbers $Z_1 = \frac{\sqrt{3}}{2} + i\frac{1}{2}$ and $Z_2 = \frac{-1}{2} + i\frac{\sqrt{3}}{2}$ are represented in an Argand diagram by points A and B respectively. Find $Arg(Z_1)$ and $Arg(Z_2)$. Given that OACB is a square in Argand diagram, where O is the origin, find the modulus and the argument of the complex number represented by C.
 - (b) Find the least value of |Z| subjected to the condition $\arg(z+1) = \frac{\pi}{6}$.