

THE OPEN UNIVRVERSITY OF SRI LANKA

B. Sc. DEGREE PROGRAMME / STAND ALONE COURSE 2015 / 2016

LEVEL 4 - FINAL EXAMINATION

CMU2221 / CME4221 - ORGANIC CHEMISTRY I

DURATION: 3 HOURS

Monday, 16th January 2017

9.30 a.m. - 12.30 p.m

ANSWER ALL QUESTIONS

1. (a) (i) How many stereoisomers are possible for the following compound A?

- (ii) Draw the structure of the enantiomer of A.
- (iii) Draw the structure of the diastereoisomer of A, which gives the same ketone as A on oxidation with PCC.
- (iv) Determine the configuration of the stereocenters of the compound A as R/S. (Label the stereocenters with numerals or letters).
- (v) Write down the steps you would take to separate a racemic mixture of **A** into optically pure isomers?

(40 Marks)

- (b) (i) Give the mechanism of the solvolysis of 2-bromo-2-methylpropane in water.
 - (ii) Draw the completely labeled energy diagram for the above reaction.
 - (iii) It is observed that when this reaction is carried out in acetone-water mixture the rate of the solvolysis reaction is decreased. Explain this observation.

(25 Marks)

- (c) (i) Giving reasons state which of the two anions, C₂H₅O⁻ and C₂H₅S⁻, shows higher nucleophilicity in ethanol (No marks if reasoning is not given).
 - (ii) When 2-bromopropane is reacted with C₂H₅S⁻ Na⁺ in ethanol two products are being formed. Give the structures of those two products.
 - (iii) Giving reasons, state which one is the major product of this reaction (*No marks if reasoning is not given*).

(25 Marks)

(d) Giving the mechanism predict the product (with its stereochemistry) of any one (01) of the following reactions.

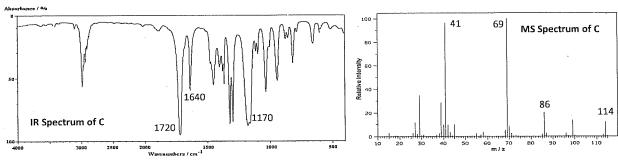
(i)
$$H \rightarrow OH + SOCl_2$$
 ether C_6H_{13}

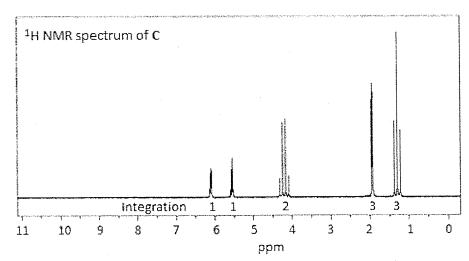
(10 Marks)

2. (a) Calculate the expected λ_{max} of the compound **B** using Woodward-Fieser rules for α , β unsaturated ketone given below.

Base value for α,β -unsaturated ketone Increments for	=	215 nm	
Double bond extending conjugation		+ 30 nm	0
Alkyl group or ring residue at α	=	+ 10 nm	
β	=		H ₃ C
γ and higher	===	+ 18 nm	(B)
Exocyclic double bond position Homoannular diene component		+ 05 nm	
	=	+ 39 nm	
			(10 Marks)

- (b) Answer any TWO (02) of the following.
 - (i) Explain why [18]-annulene shows highly deshielded and highly shielded two singlets, at δ 8.2 (12H) and δ -1.8 (6H) in its 1H NMR spectrum. (Your answer should include reasons for the deshielding and shielding of these two peaks).


- (ii) Considering the energy levels of molecular orbitals of ethylene, explain why conjugation of double bonds leads to an increase of wavelength at which UV absorbs (UV λ_{max}).
- (iii) Using mass spectroscopy, how would you identify the presence of Br and Cl in organic compounds?


(20 Marks)

- (c) Briefly giving reasons state how you would distinguish between the compounds in any **FOUR** (04) of the following pairs using the indicated spectroscopic method.
 - O CH₃CCH₂CH₃ (i) HOCH2CH2CH=CH2 and IR spectroscopy CH₃CH₂C≡C−H IR spectroscopy (ii) CH₃C≡CCH₃ and (iii) CH₃CCH₂CH₂CH₂CH₃ Mass spectroscopy and ĊH₃ (iv) and ¹H NMR spectroscopy (v) ¹H NMR spectroscopy and

(20 Marks)

- (d) Mass spectrum, IR spectrum and the 1H NMR spectrum of compound C ($C_6H_{10}O_2$) are given below.
 - (i) Elucidate the structure of C and assign the ¹H NMR signals to your proposed structure.
 - (ii) Give the structures of fragment ions at m/z 114, 86, 69 and 41 of the mass spectrum of C.

(50 Marks)

- 3. (a) Giving reasons explain any TWO (02) of the following statements.
 - (i) *p*-Nitroaniline is more basic than aniline.
 - (ii) Reaction undergone by benzaldehyde in the presence of conc. KOH is different to what is shown by acetaldehyde under the same conditions.
 - (iii) pK_a of chloroacetic acid is lower than that of acetic acid.

(20 marks)

(b) Give the structures of the major products (**D**-**H**) of the following reactions.

(25 marks)

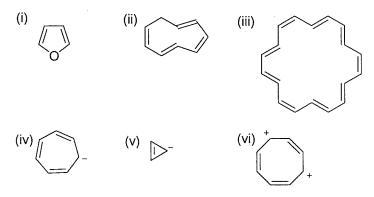
(c) Give structures of the intermediates and the products of any **THREE** (03) of the reaction schemes given below.

(ii)
$$CH_3$$
 CH_3Li I H^+/H_2O J

(iii) $PhCO_2OH$ K H^+/H_2O L

(iii) H CH_3 $Hg(OAc)_2$ H_2O/THF M $NaBH_4$ N

(iv) CH_3 THF/BF_3 O $H_2O_2/NaOH$ P


(30 marks)

(d) Giving suitable reagents and conditions show how any **ONE** (01) of the following conversions can be carried out.

(i)
$$HO-CH_2C\equiv CH$$
 $HO-CH_2C\equiv C-CH_2OH$ (ii) $CO_2C_2H_5$ CH_2OH

(25 marks)

4. (a) Predict whether each of the following compound is aromatic, anti-aromatic or non-aromatic. Explain your answer.

(30 marks)

- (b) (i) Write the resonance structures of the intermediate that is formed in the nitration of anisole, (C₆H₅OCH₃) at the *ortho* position. Account for the observed equal rates of nitration of C₆H₅OCH₃ and C₆D₅OCH₃.
 - (ii) Compare the activation effects of the following *ortho-/para*-directing groups in electrophilic aromatic substitution and explain your answer.

$$-OH$$
, $-O$ and $-OCOCH_3$ (40 marks)

- (c) Giving necessary reagents and reaction conditions indicate how you would carry out any **TWO** (02) of the following conversions.
 - N.B. Conversions may involve more than one step.

(30 marks)

-----Copyrights reserved -----