

THE OPEN UNIVERSITY OF SRI LANKA

B Sc Degree/ Stand Alone courses in Science

LEVEL 5 - ASSIGNMENT TEST I 2015/2016

CMU 3233- POLYMER CHEMISTRY

DURATION: One Hour

DATE: 15th May 2016

TIME: 09.00 a.m -10.00 a.m

This Assignment test paper consists of two parts, A and B. Part A consists of 10 MCQ and part B consists of two structured type questions. You need to hand over only part B with the MCQ answer sheet.

- Answer all questions
- Choose the most correct answer to each question and mark a cross" X" over the answer on the given answer sheet.
- Use a PEN (not a pencil) in answering.
- Any answer with more than one cross will not be counted.
- 1/6th marks will be deducted for each incorrect answer
- The use of a non programmable electronic calculator is permitted.
- Logarithm tables will be provided.
- Mobile phones are not allowed.

Avogadro constant, (L) = 6.022×10^{23} mol⁻¹

Plank constant, (h) = 6.63×10^{-34} Js

Velocity of light, (c) $= 3 \times 10^8 \text{ ms}^{-1}$

Standard atmospheric pressure, $(\pi) = 10^5 \,\mathrm{Pa}(\mathrm{Nm}^{-2})$

Gas Constant (R) = $8.314 \text{ J mol}^{-1} \text{ K}^{-1}$

Faraday constant (F) $= 96,500 \text{ C mol}^{-1}$

 $Log_e(x) = 2.303 Log_{10}(x)$

PART A – Answer all questions. (30 marks)

01. What is the functionality of $HO-CH_2-CH_2-CH_2-COOH$?

1) 0	2) 1	3) 2	4) 3	5) 4	
 Mono Olefin Pheno Polym 	tement is incorrect? mers contain two or as and acetylenes can al has only two react arers take longer time arers do not have satu	more functional gro n act as monomers. ive sites e for dissolution.	ups.		
03. What type 1) Anionic. 5) All types o	2) Cationic.	e used to polymerize 3) Free radical.	•	l cationic	
1) ~ d d d	ctic polymers can be Idddd ~~ IIdId~~	e represented as 2) \(1 \) 1 1 1 5) \(\sqrt{c} \) d d d d d l	l~~ 3)~~	d ldldldl ∼√∽	
 It It Ca Ca 	is mainly used to pr consists of two com atalyst part consists o – catalysts part con	oout Ziegler – Natta ooduce stereo regular ponents. of halides of group 4 asists of organometal dienes only via monetal	polymers. -7 elements. lic compounds.	nism.	
1) Mo 2) The 3) Rei 4) Lov	onomers are dissolve	ner is formed.	olvent and conde		
(a). Tl (b) Cl	he monomer is in th	added to control the		·	
The correct st 1. (a) only.	tatement/s is/are 2. (b) only.	3. (c) only.	4. (a) and (c)	only 5. all of above	2

08. Above T_g, the polymer is in the

- (a) rubbery state
- (b) visco-elastic state
- (c) Glassy state
- (d) solid state

(e) visco-fluid state

The correct statement/s is/are

- 1) (a) and (b) only.
- 2) (b) and (c) only.
- 3) (c) only.

- 4) (a), (b) and (c) only
- 5) (b), (d) and (e) only.

09. Tm can be measured using

- 1) IR Spectroscopy
- 2) NMR spectroscopy
- 3) Thermal analysis
- 4) X-Ray diffraction 5) All of above.

10. For unsymmetrical polymers, the correlation between T_{g} and T_{m} can be represented as

- 1) $T_g = \frac{1}{2} T_m$
- $2) T_m = \frac{1}{2} T_g$
- 3) $T_g = \frac{2}{3}T_m$ 4) $2T_m = \frac{2}{3}T_g$ 5) $T_g = \frac{1}{3}T_m$

PART B – Answer all questions only in the space provided. Attached sheets will not be graded. (70 marks) 01. (a)i. What is meant by a functionality of a monomer? (03 marks) ii. Can any molecule act as a monomer? Explain. (04 marks) iii. What are the differences among mono-functional molecules, bi-functional and tri-functional monomers? Give examples to each. (09 marks)

(b) i. What is meant by "Autoacceleration"? Explain.

(04 marks)

ii. What are the differences between suspension and emulsion polymerization techn	iques? (08 marks)
	·
(c) i. What are the constituents of Zeiglar-Natta catalyst?	(05 marks)
ii. Why is Zeiglar-Natta catalyst important?	(03 marks)
02. (a) i. What is the difference between homo polymers and copolymers?	(04 marks)

ii. Write down the types of copolymers and explain their structural differences	(12 marks)
(b) i. List down five factors that affect the crystallinity of polymers?	(10 marks)
ii. How does the crystallinity change the physical properties of polymers? Explain.	
	(08 marks)

THE OPEN UNIVERSITY OF SRI LANKA B.Sc DEGREE/STAND ALONE COURSE IN SCIENCE - LEVEL 5 Assignment Test I – 2015/2016 CMU 3233 - POLYMER CHEMISTRY

MCQ ANSWER SHEET: Mark a cross (x) over the most suitable answer.

Registration No.					Marks
		•	Unanswered		
			Correct Answers	-	
			Wrong Answers		
			Total		
1. 1 2 3	4 5 2.	1 2	3 4 5	3. 1	2 3 4 5
4. 1 2 3	4 5 5.	1 2	3 4 5	6. 1	2 3 4 5
7. 1 2 3	4 5 8.	1 2	3 4 5	9. 1	2 3 4 5
10. 1 2 3	4 5				

Registration Number:
Name:
Address:

¥.

THE OPEN UNIVERSITY OF SRI LANKA

B Sc Degree/ Stand Alone courses in Science

CMU 3233- POLYMER CHEMISTRY

ANSWER GUIDE: CAT I (2015/2016)

PART A: (MCQ)

1. 3

2. 3

3. 5

4. 3 or 4

5. 5

6. 3

7. 5

8. 1

9. 5

10. 3

PART B:

- 01. (a) i. Number of functional groups present in the monomer.
 - ii. No. To act as a monomer, molecules should have two or more reactive sites.
 - iii. Mono-functional molecules Molecules having one reactive site.

Cannot act as a monomer. Example: CH₃COOH

Bi-functional monomers – Molecules having two reactive sites.

Can act as monomers. Example: HO-CH₂-COOH

Tri-functional monomers – Molecules having three reactive sites.

Can act as monomer. Example: Phenol

(b) i. Autoacceleration – With the increase of viscosity, the diffusability of the growing polymer chain is restricted and chain collision becomes difficult. As a result, active sites accumulate and the rate of polymerisation increases enormously.

ii.

Suspension Polymerisation	Emulsion Polymerisation		
Requires longer duration for very high	Requires shorter duration for very high		
conversions.	conversions.		
Monomer is suspended in water in the	Monomer is dispersed in water as an		
form of tiny droplets.	uniform emulsion.		
Surface active agents are used.	Emulsifying agents are used.		
Polymer is produced as a suspension of	Polymer produced is dispersed uniformly in		
very small pearls or beads.	the aqueous phase, that is forming a latex.		
Polymer can be isolated by filtration.	Polymer can be isolated form the latex by		
	destabilizing latex, spray drying or freezing.		
Polymer can be isolated by filtration.			

(c) i. Catalyst – Halides of gp 4-7 elements

Co-catalyst – Organometallic compounds

such as alkyls, aryls and hydrides of gp 1-4 metals

ii. To produce stereo-regular polymers.

To polymerize olefines.

- **02.** (a) i. Homo polymers consist of only one type of repeat unit where as copolymers consist of more than one type of repeat unit.
 - ii. 1. Random copolymers Two monomers are arranged in a random manner.

2. Alternative copolymer – Two monomers are added to alternative to each other.

3. Block copolymer – Block of one monomer and a block of another monomer are connected.

4. Graft copolymer – Existing polymer react with another monomer.

В

B

Ŗ

1

(b) i. Symmetry of polymers

Intermolecular bonding

Helix structure

Tacticity

Branching and molecular mass

Chain flexibility and steric factor

ii. Crystalline polymers are actually semi crystalline. Therefore, the properties of polymers depend on the percentage crystallinity or degree of cystallinity.