

THE OPEN UNIVERSITY OF SRI LANKA B.Sc. & B. Ed. DEGREE / STAND ALONG COURSE IN SCIENCE - LEVEL 5 ASSIGNMENT TEST II (NBT) 2014/2015

CMU3122/CME5122 - Organometallic Chemistry

08 th March 2015 (Sunday)	4.00 – 5.00 p.m.
ANSWER ALL OUESTIONS	

Select the most correct answer/choice to each question given below. Mark a cross (X) over the most suitable answer on the given answer script. Any answer with more than one cross will not be counted.

PART A (45 marks)

- 1. Consider the following statements regarding insertion reactions.
 - (i) Coordination number of the metal is not changed.
 - (ii) Valence electron count of the metal is changed by two units.
 - (iii) Migratory insertion of methyl on to a CO is called "1,1-insertion".

The correct statement/s is/ are

- 2) (i) & (iii) only. 3) (i) & (ii) only. 1) (i) only. 4) (ii) & (iii) only. 5) (i), (ii) & (iii).
- 2. The component not used or formed in the Monsanto process is
 - 1) HOAc
- 2) MeCOI
- 3) H₂
- 5) MeOH 4) CO
- 3. Most likely reaction that would take place is
 - 1) $[(\eta^5-C_5H_5)IrCl_2(\eta^2-CH_2=CH_2)]^+ + Ph^- \rightarrow [(\eta^4-C_5H_5Ph)IrCl_2(\eta^2-CH_2=CH_2)]$
 - 2) $[Ni(PPh_3)_4] + 4NH_3 \rightarrow [Ni(NH_3)_4] + 4PPh_3$
 - 3) $[MnCF_3(CO)_5] + CO \rightarrow [Mn(COCF_3)(CO)_5]$
 - 4) $[(\eta^5-C_5H_5)_2\text{TiCl}_2] + \text{AlMe}_3 \rightarrow [(\eta^5-C_5H_5)_2\text{TiClMe}] + \text{AlClMe}_2$
 - 5) $[Fe(CO)_5] + 3 CF_2 = CF_2 \rightarrow [(OC)_3 Fe(\eta^6 C_6 F_6)] + 2 CO$
- 4. Which one is an example of an reductive elimination reaction?
 - 1) $[Ni(CO)_4] + CH_2 = CH_2 \rightarrow [(OC)_3Ni(CH_2 = CH_2)] + CO$
 - 2) $[Ni(CO)_4] + 2 CF_2 = CF_2 \rightarrow [(OC)_2Ni(C_4F_8)] + 2 CO$
 - 3) $[Pt(Ph)(H)(PPh_3)_2] + 2 PPh_3 \rightarrow [Pt(PPh_3)_4] + C_6H_6$
 - 4) $[(\eta^3-C_3H_5)PtMe(CO)_2] \rightarrow [(\eta^3-C_3H_5)Pt(CO)(COMe)]$
 - 5) $[MeMn(CO)_5] + CF_2 = CF_2 \rightarrow [Mn(CF_2CF_2Me)(CO)_5]$
- 5. Which statement is **not true** about [RhCl(PPh₃)₃]?
 - 1) Its IUPAC name is chlorotris(triphenylphosphine)rhodium.
 - 2) It is a catalyst for hydrogenation of olefins.
 - 3) It is a tetrahedral complex.
 - 4) It is called "Wilkinson's Catalyst".
 - 5) It reacts with O_2 to give $[RhCl(\eta^2-O_2)(PPh_3)_3]$.
- 6. What is the **major product** of the reaction, cis-[PtCl₂(PMe₃)₂] + excess LiMe \rightarrow
 - 1) $\text{Li}_2[\text{PtCl}_2\text{Me}_2(\text{PMe}_3)_2]$
- 2) cis-[PtMe₂(PMe₃)₂]
- 3) trans-[PtCl(Me)(PMe₃)₂]
- 4) Li[PtCl₂Me(PMe₃)₂]
- 5) cis-[PtCl(Me)(PMe₃)₂]

		$1, [Mn_2(CO)_{10}] + 1$		
		$Mn_2(CO)_5$ 3		
4) $Na_2[Min($	$(CO)_5$ 3) Na ₂ [Mn(CO) ₅] and Na[$Mn_2(CO)_{10}$].	
(ii) [HC	co(CO) ₄] is a H ^d co(CO) ₃ (PPh ₃)]		an [HCo(CO) ₄].	(mag
	respect to SiM		(111	PP····)
	statement/s is/a			
		2) (i) & (iii) only. 5) (i), (ii) & (iii).	3) (i) & (ii) only.
0 B Uzdrida aba	traction could t	alsa ulasa in		
9. β-Hydride abs		•	(D 1/DE4) 1	
	SiOMn(CO) ₅]		$[Pd(PEt_3)_4]$	DDI \ I
3) [MeR 5) [(η ⁵ –(C ₅ H ₅)Rh(Me)(P	Ph ₃)(CO)]I	trans-[PtBr(Me)(PPh ₃) ₂]
10. Consider the	following state	ments about the Va	aska's compley two	ms- [IrCl(CO)(PPh ₃) ₂].
(i) It res	acts with Clato	give [IrCl ₃ (CO)(PI	15ka 5 complex, <i>tre</i> 2h-1-1	
		give [IrCl(CO) ₂ (P]		
		give trans- [IrI(Co		
	statement/s is/a		$\mathcal{I}(PPn_3)_2$].	
1) (ii) on			2) (') 0 ('')	•
	(iii) only.	2) (i) & (iii) only.5) (i), (ii) & (iii).	3) (i) & (ii)	only.
11. Consider the	following com	nleves		
(i) [PhRh		(ii) [MeCo(CO) ₃	1 (:::) [(5)	T.M. M. (OH.DI) 1
		(II) [IMECO(CO) ₃	sj (m) [(η –($C_5Me_5)Ta(CH_2Ph)_3$
u-Agostic (a	.ipna agosuc) ir	iteraction could be	seen in	
4) (ii) &	iy. (iii) only.	2) (i) & (ii) only.5) (i), (ii) & (iii).	3) (i) & (iii)	only.
4.4				
12. The most sta				cyclopentadiene (C5H6) is
	$O)_3(\eta^4-C_5H_6)]$	2) [Fe(CO	$(\eta^2 - C_5 H_6)$	
	$C_5H_5)Fe(CO)_3$	4) [Fe(CO	$(\eta^4 - C_5 H_6)_2$	
5) [(η ⁵ –C	$C_5H_5)_2Fe$, , , , , , , , , , , , , , , , , , , ,	
			·	
		a coordinated alker	ne ligand is not fac	cilitated if
	etal is positively			
2) the m	etal is coordina	ted to poor σ-dono	r ligands.	
3) the m	etal is coordina	tively saturated.		
	is in a higher o			
		oices are correct.		
14. What is the m	ıost likely carb	onyl stretching free	quency in the IR sp	ectrum of [Ir ₄ (CO) ₁₂]?
1) 1660	2) 1760	3) 1860	4) 2080	5) 2250
				•
15. Consider the	following states	ments,		
(i) N	Metal hydrides	can be prepared by	protonating metal	complexes
7	with a strong ac	eid such as CF ₃ CO ₂	Ĥ.	1
		on of H ₂ to a metal		tal dihydride
` ´ '	with the cis-arra	angement.	0-1111	
		onsidered as the d	ihydrogen compl	ev of CH ₂ +
, ,	-115 Can DC CC	ribideted as tile U	myarogen compi	CA UI C113 .
The corre	ect statement/s	is/are		
			2) (!) 0 (!!!)	1
1) (i) only	·	2) (i) & (ii) only	3) (i) & (iii)	only
4) (ii) & ((III) only	5) (i), (ii) & (iii)		

TI B. Cl A

R

THE OPEN UNIVERSITY OF SRI LANKA B. Sc DEGREE PROGRAMME 2014/2015 CMU3122/CME5122 – ORGANOMETALLIC CHEMISTRY- LEVEL 5 ASSIGNMENT TEST-II (Part A)

MCO	ANSWER S	SHEET: Marl	a cross (X)	over the r	most suitable answer.
-----	----------	-------------	-------------	------------	-----------------------

 $_{1})_{2}].$

H₆) is

:]?

															Par	t A	
Reg. No).	For Examiners Use									Part B						
															Tota	ıl %	
												Mark	S				-
				C	orre	ct Ans	wers										
				W	rong	Answe	rs										
				T	otal												
1.	1	2	3	4	5	2.	1	2	3	4	5	. З.	1	2	3	4	5
4.	1	2	3	4	5	5.	1	2	3	4	5	6.	1	2	3	4	5
				<u></u>						1				<u> </u>			
7.	1	2	3	4	5	8.	1	2	3	4	5	9.	1	2	3	4	5
10.	1	2	3	4	5	11.	1	2	3	4	5	12.	1	2	3	4	5
	L	1	1		1				1		5		-		3		5

Part B (55 marks)

Answer the questions in the space provided. Attached sheets will not be graded.

- 1. (a) (i) What is the **molecular formula** of the product (A) formed due to oxidative addition of hydrogen to [IrH(PPh₃)₃]?
 - (ii) Draw and identify the structures of the two isomers of (A).

(b) $TiEt_4$ decomposes \emph{via} reductive elimination and β -hydride elimination as shown below.

$$TiEt_4 \rightarrow [TiEt_2] + (\mathbf{K})$$

 $TiEt_4 \rightarrow [Ti(H)Et_3] + (\mathbf{L})$
 $[Ti(H)Et_3] \rightarrow [TiEt_2] + (\mathbf{M})$

Identify the molecules (K), (L) and (M).

- (K) (L)
- (M)
- (c) (i) Arrange NO^+ , PH_3 , NH_3 and CO in the order of increasing π -acceptability.
- (d) Predict the product(s) of the following reactions using the hint given in the brackets.
 - (i) $[Co(CN)_5]^{3-}$ + MeI \rightarrow ? + ? (1e-oxidative addition)

(ii) trans-[Pt(CH₂CH₃)₂(PPh₃)₂] + CO → (Migratory insertion to give a 4-coordinate 16e-complex)

(e) Write on the dotted line, the compound/reagent(s) wh	ich	car	i be	us	ed to	carry	y oi	ıt
the following conversions.	-	-		-					

- (i) $[(\eta^5-C_5H_5)Zr(H)Cl] \rightarrow [(\eta^5-C_5H_5)Zr(Et)Cl]$ -----
- (ii) $[W(CO)_6] \rightarrow K[WH(CO)_5]$ -----
- (f) [RhMe(PPh₃)₃] undergoes cyclometallation followed by reductive elimination to give a square planar metal complex (**R**) and an organic molecule (**S**).

Draw the structures of (R) and (S).

The Open University of Sri Lanka B.Sc. Degree Program 2014/2015 CMU3122/CME5122 – Organometallic Chemistry - Level 5 Answer Guide to Assignment Test-II held on 08-03-2015

Part A - MCO ANSWERS

1. (2.1	불명하다는 사람들은 사람	2. (3. (4)	4.	(3)	5. (3)
6. (L		7. (8. (5	Territoria (1986)	9.	1.3250000000	10. (5)
11 (12. (13. (5)	14.	(4)	15. (5)

Part B

ive a

(1) (a) (i) [IrH₃(PPh₃)₃] (ii)

(b)
$$K = CH_3CH_2CH_2CH_3$$

 $L = CH_2=CH_2$
 $M = CH_3CH_3$

(c)
$$NH_3 < PH_3 < CO < NO^+$$

(d) (i)
$$[MeCo(CN)_5]^{3-} + [CoI(CN)_5]^{3-}$$