

THE OPEN UNIVERSITY OF SRI LANKA

B.Sc./B.Ed DEGREE IN SCIENCE-LEVEL 5

FINAL EXAMINATION-2014/2015

CMU3122/CHU3127 ORGANOMETALLIC CHEMISTRY

Date: 12th May 2015 (Tuesday)

Time 1.00 - 3.00 p.m.

Answer any FOUR (04) questions. If more than four questions are answered, only the first four answers will be marked.

- 1. (a) Give the IUPAC name for each of the following complexes.
 - (i) $[Fe(\eta^3-C_5H_5)(\eta^3-C_3H_5)(CO)_2]$

(ii)

(20 marks)

- (b) Draw the **structures** of the following complexes.
 - (i) $[Fe(\eta^3-C_5H_5)(\eta^3-C_3H_5)(CO)_2]$
 - (ii) $(\eta^1$ -Allyl) $(\eta^4$ -cyclobutadiene)ethenylpalladium

(20 marks)

(c) Determine the valence electron count (**VEC**) of the complex $[CoCl(\eta^1-C_3H_5)(\eta^3-C_5H_5)(\eta^2-C_2H_4)]$ using the **ionic model**. (Indicate in your workout, the electron contribution made by each ligand, Co is a Group 9 metal).

(15 marks)

- (d) What is the active catalyst used in
 - (i) Monsanto process and (ii) Shell process

(12 marks)

- (e) (i) Arrange CN⁻, NH₃, CS and CO in the increasing order of π -acceptability.
 - (ii) Give one anion which is isoelectronic with PH₃.

(15 marks)

(f) Using an orbital diagram, explain the bonding between a metal (M) and an alkynyl (-C≡CR) ligand.

(18 marks)

2. (a) Which one of the following compounds is metallacyclopropane moiety? Give your re [CoCl(PEt ₃) ₃ {(CN) ₂ C=C(CN) ₂ }] (A	easons.		4. Predi bracl
$[CoCl(PF_3)_3(H_2C=CH_2)]$ (B)	•)	(20 marks)	(a)
 (b) (i) Determine the coordination number of [(η⁵-C₅H₅)Re(η²-cyclobutadiene)(CO)₂]. 	(Group number of $Re = 7$)	(b)
(ii) Determine the coordination geometry of 18e-complex [FeCl(NO)(PF ₃) ₄].	the Fe-NO fragment in the	e (20 marks)	(c)
(c) How would you account for the variation in t	he CO stretching frequence	cies	(d)
in the following compounds?	•		
Compound	v(CO) in cm ⁻¹		(e)
free CO	2143		(f)
$[Pd(CO)(PF_3)_3]$	2100		4.
$[Pd(CO)(PMe_3)_3]$	2050	(20 marks)	(g)
(d) Draw and identify the structures of all geom	etrical isomers of [FeI ₂ (C	(O)2(dnne)]	(h
dppe = $PPh_2CH_2CH_2PPh_2$ and it is a bidentat	e ligand.	=)2(uppe)].	
Comment on optical isomerism of above iso	mers.	(20 marks)	(i
(e) Give four main differences between Fischer-	-carbenes and Schrock-car	benes. (20 marks)	5. (a)
3. (a) Briefly discuss the geometry and the nature	of bonding in the anion		
of the Ziese's salt K[PtCl ₃ (η^2 -CH ₂ =CH ₂)].		(20 marks)	
(b) (i) What is an agostic interaction?			
(ii) Assume that <i>cis</i> -[CoI(CO) ₂ (PPh ₃)] (C) sho	ows square-nyramid al ar	rangement	
with one agostic type interaction in the apical position. Draw the structure			(b)
of (C) and identify the type of agostic interaction associated with it? (iii) (C) undergoes cyclometallation to give a Co(III) hydride (D).			(0)
Draw the structure of (D) .		(32 marks)	
(c) [Ni(PEt ₃) ₃] undergoes an 2e-oxidative addition reaction with allyl bromide CH ₂ =CHCH ₂ Br to give a five coordinate neutral Ni(II) complex (E). (E) looses one neutral ligand to give a Ni(II) complex with two geometrical isomers (F) and (G). Removal of another neutral ligand from (F) and/or (G) gives a neutral, four coordinate			(c)
π -allyl-complex (H). Identify (E), (F), (G) and	(n).	(32 marks)	
(d) [Cr(CH ₂ SiMe ₃) ₃] is an isolable crystalline solid, but [CrMe ₃] does not exist.			
Explain.	, [(16 marks)	
-		(10 marks)	

4. Predict the major product(s) of each of the following reactions, using the hint given in the brackets.

- (a) cis-[NiBr(Et)(PPh₃)₂] $\xrightarrow{\Delta}$ (β -H abstraction) (10 marks)
- (b) $[(\eta^5 C_5 H_5) Fe(\eta^2 CH_2 = CH_2)(CO)_2]^+ + NMe_3 \rightarrow (nucleophilic addition)$ (12 marks)
- (c) $[MnBr(CO)_5]$ + cyclobutadiene \rightarrow (substitution with loss of two CO) (10 marks)
- (d) $[IrMe(PPh_3)_3] \rightarrow (cyclometallation and then reductive elimination)$ (12 marks)
- (e) cis-[PtCl₂(PPh₃)₂] + 2 LiC=CPh \rightarrow (two nucleophilic substitutions) (10 marks)
- (f) trans-[Pt(CN)(Prⁿ)(PF₃)₂] \rightarrow (cyclometallation via γ C-H bond activation) (12 marks)
- (g) $[(\eta^5-C_5H_5)(OC)_2Ru(\eta^1-CH_2CH=CH_2)] + MeBF_4 \rightarrow (electrophilic addition)$ (12 marks)
- (h) $[W(CO)_3(\eta^6\text{-cht})] + Ph_3CBF_4 \rightarrow \text{(hydride abstraction)}$ (10 marks) (cht = 1,3,5-cycloheptatriene)
- (i) $[(\eta^5 C_5 H_5)_2 \text{TaMe}_2]^+ + \text{NaOMe} \rightarrow \text{(deprotonation)}$ (12 marks)
- 5. (a) A neutral mononuclear 18e-complex (J) contains a Co(I) centre coordinated only to hydride and carbon monoxide ligands. (J) can be prepared by the reaction between the binuclear Co(0) complex (K) and H₂. (J) looses a gas molecule to give the 16e-complex (L). Coordination of MeCH=CH₂ to (L) gives the 18e olefin-complex (M). In the presence of CO, (L) undergoes hydride migration to give the 16e-complex (N). (L) reacts with H₂ to give the 18e-cobalt(III) hydride (O). Identify (J), (K), (L), (M), (N) and (O).
 - (b) The active catalyst [RuHCl(PPh₃)₃] coordinates with CH₂=CH₂ to give the olefin-complex (**P**). (**P**) undergoes migratory insertion to give the alkyl-complex (**Q**). (**Q**) reacts with H₂ to give the dihydrogen- complex (**R**) which eliminates (**S**) to regenerate [RuHCl(PPh₃)₃]. Identify (**P**), (**Q**), (**R**) and (**S**). (28 marks)
 - (c) Reaction of the E-oxime, Me₃CC(=NOH)CF₃, with [PdCl₂(NCPh)₂] gives the cyclometallated chloride-bridged Pd(II) dimer which contains a 5-membered chelate ring. Draw the **structure** of this dimeric complex. (10 marks)

0 marks)

!0 marks)

20 marks)

)].

20 marks)

20 marks)

20 marks)

ιt

2 marks)

(G). dinate marks)

marks)

- (d) Suggest reagent(s) or active catalyst(s) which can be used to carry out the following conversions.
 - $CH_2=CHCH=CH_2 + 2 HCN \rightarrow NC(CH_2)_4CN$ (i)
 - $[Mo(CO)_6] \rightarrow [(CO)_5MoC(=O)H]^-$ (ii)
 - (iii)
 - $[(\eta^{5}-Cp)_{2}Zr(H)Cl] \rightarrow [(\eta^{5}-Cp)_{2}Zr(CH=CH_{2})Cl]$ $[(\eta^{5}-Cp)WMe(\eta^{2}-CH_{2}=CH_{2})]^{+} \rightarrow [(\eta^{5}-Cp)W(CH_{2}CH_{2}CH_{3})Me]$ (iv) (20 marks)
- 6. (a) (i) Give **three** reasons as to why palladium complexes are used widely in catalysis.
 - (ii) [Pd(PPh₃)₄] catalyses the reaction of ethene with bromobenzene to give Styrene (PhCH=CH₂) and HBr. Write a mechanism for this process.

(35 marks)

- (b) (i) What is meant by "Hydrosilation of an olefin"?
 - (ii) What is the Speier's catalyst?
 - (iii) What is the main product obtained if CH₂=CHCN is reacted with PhMe₂SiH in the presence of the catalyst [RhH(CO)(PPh₃)₃]?

(25 marks)

(c) How would you prepare MeTiCl₃, Me₂TiCl₂ and TiMe₄ from TiCl₄.

(15 marks)

(d) Identify the two molecules formed due to the ring closed metathesis of 1,7-octadiene (C₈H₁₄).

(15 marks)

(e) The following molecule undergoes an intramolecular Heck reaction to give a benzofuran derivative (X). Draw the structure of (X).

(10 marks)