The Open University of Sri Lanka B.Sc Degree/Stand Alone Programme 2006/2007 Organic Chemistry CHU 2221 Assignment test I Answer guide .1. | | Major product | Reaction type | |---|--|---------------| | а | CH₃ | Substitution | | b | CH ₃ | Substitution | | С | CH ₃ CH ₂ CH ₂ CH=CH ₂ | Elimination | | d | CH ₃ CH ₂ CHCH ₃ | Acid -Base | | е | CH ₃ CH ₂ CHCH ₃ | Addition | 2 a. Ortho and para positions of the benzene ring becomes more electron rich than the meta positions due to the hyper-conjugative effect of toluene. Therefore electrophiles preferentially attack on those positions. ## Read Part I Page 23-24 to see how you could draw resonance structures due to hyperconjugation c. Intermolecular attractive forces present in alcohol are H- bonding, whereas those of propanone are dipole-dipole interactions. H-bonds are stronger than dipole-dipole attractive forces and more energy is required to separate molecules by breaking H-bonds. Therefore boiling point of 2- propanol is higher than propanone. Read Part I page 130 | Spectrum | Compound | Reasons | |----------|----------|---| | 1 | F | 1250 cm ⁻¹ ,C-O stretching, 1400-1600 cm ⁻¹ benzen ring | | 2 | C | 1720 cm ⁻¹ ,O=C - OR Conjugated, 1400-1600 cm ⁻¹ benzene ring | | 3 | Н | 1690 cm ⁻¹ ,O=C Conjugated, C=O, 1400-1600 cm ⁻¹ benzene ring | | 4 | D | 3400 cm ⁻¹ - broad peak H-bonded OH group | 4. IR spectrum 3251 cm $^{-1}$ =C-H, 2105 cm $^{-1}$ -C=C-, 1600 cm $^{-1}$ aromatic C=C , 1511cm $^{-1}$ and 1343 cm $^{-1}$ NO₂ Group H' NMR Singlet Doublet δ 3.2 δ 7.6 δ 8.2 1 : 2 : 2 Area ratio Three types of H's δ 7.6 7 two doublets para disubstituted benzene δ (7.6 - 8.2) Aromatic ring protons δ 3.2 -C≡C-H