The Open University of Sri Lanka B.Sc Degree/Stand Alone Programme 2006/2007 Organic Chemistry CHU 2221 Assignment test I Answer guide

.1.

	Major product	Reaction type
а	CH₃	Substitution
b	CH ₃	Substitution
С	CH ₃ CH ₂ CH ₂ CH=CH ₂	Elimination
d	CH ₃ CH ₂ CHCH ₃	Acid -Base
е	CH ₃ CH ₂ CHCH ₃	Addition

2 a. Ortho and para positions of the benzene ring becomes more electron rich than the meta positions due to the hyper-conjugative effect of toluene. Therefore electrophiles preferentially attack on those positions.

Read Part I Page 23-24 to see how you could draw resonance structures due to hyperconjugation

c. Intermolecular attractive forces present in alcohol are H- bonding, whereas those of propanone are dipole-dipole interactions. H-bonds are stronger than dipole-dipole attractive forces and more energy is required to separate molecules by breaking H-bonds. Therefore boiling point of 2- propanol is higher than propanone.

Read Part I page 130

Spectrum	Compound	Reasons
1	F	1250 cm ⁻¹ ,C-O stretching, 1400-1600 cm ⁻¹ benzen ring
2	C	1720 cm ⁻¹ ,O=C - OR Conjugated, 1400-1600 cm ⁻¹ benzene ring
3	Н	1690 cm ⁻¹ ,O=C Conjugated, C=O, 1400-1600 cm ⁻¹ benzene ring
4	D	3400 cm ⁻¹ - broad peak H-bonded OH group

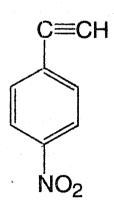
4.

IR spectrum 3251 cm $^{-1}$ =C-H, 2105 cm $^{-1}$ -C=C-, 1600 cm $^{-1}$ aromatic C=C , 1511cm $^{-1}$ and 1343 cm $^{-1}$ NO₂ Group

H' NMR

Singlet Doublet

δ 3.2 δ 7.6 δ 8.2 1 : 2 : 2


Area ratio

Three types of H's

δ 7.6 7 two doublets para disubstituted benzene

 δ (7.6 - 8.2) Aromatic ring protons

δ 3.2 -C≡C-H

