The Open University of Sri Lanka

B. Sc Degree / Stand Alone Programme 2003/2007

Organic Chemistry - CHU 3126 / CHE 5136

Level 5 - Assignment I – Test

Duration 11/2 hours

Answer Guide

Answer all questions.

1. a. Draw resonance structures for Pyrrole.

The answer is given in page 7 of your level 5 unit 1 book.

b. Giving reasons, state why pyrrole is less basic than pyridine.

In pyrrole lone pair on N delocalizes. There fore it is not available for abstract a H⁺ In pyridine lone pair is not delocalized. Therefore it can abstract H⁺ showing more basicity.

c. During the synthesis of pyrroles, acetoacetates are reacted with NaNO₂ / HOAc. One of the primary reactions that take place is as follows.

Give the mechanism of this reaction. (*Hint:* ⁺*NO is formed from NaNO₂ and HOAc*) (30 Marks)

$$NaNO_{2} + H^{+} \longrightarrow NO$$

$$(\bar{o}-N=O+H^{+} \rightleftharpoons HO-N=O+H^{+} \rightleftharpoons H_{2}O) \stackrel{h}{\sim} N=O \Rightarrow N=O+H_{2}O$$

$$(\bar{o}-N=O+H^{+} \rightleftharpoons HO-N=O+H^{+} \rightleftharpoons H_{2}O) \stackrel{h}{\sim} N=O+H_{2}O \Rightarrow N=$$

2. Giving necessary reagents and conditions show how you would carry out the following conversions.

(20 Marks)

 $\underline{\mathsf{T}}$

OR

$$\begin{array}{c|c}
 & Me_2 N-C-H \\
\hline
 & POCl_3 \\
\hline
 & H
\end{array}$$

$$\begin{array}{c}
 & H_2O \\
\hline
 & H
\end{array}$$

Î

$$\frac{H_2O_2/HOAC}{N_1} \qquad \frac{H_NO_3/H_25O_4}{O_-} \qquad \frac{PCl_3/\Delta}{O_-}$$

3. Give **ONE** example to illustrate nucleophilic substitution reaction of quinoline

NH2

$$\frac{\text{(1) NQNH}_2/\Delta}{\text{(2) H}_2\text{O}} \rightarrow$$

4. a. Give a method to prepare the following compound.

(05 Marks)

b. Give the products of the following reactions.

(20 Marks)

c. Giving appropriate mechanism, explain why the following reaction does not occur.

Me
$$H$$

1. MeMgBr

2. H_3O^+

Me OH

Me OH

Me OH

Me OH

Me OH

Me OH

If either the Grignard reagent or the ketone is sterically hindered, the expected Girgnard reaction does not occur.