

THE OPEN UNIVERSITY OF SRI LANKA B.Sc. & B. Ed. DEGREE / STAND ALONG COURSE IN SCIENCE - LEVEL 5 ASSIGNMENT TEST II (NBT) 2017/2018 CYU5300/CMU3122 - Organometallic Chemistry

20th July 2018 (Friday)

 4.15 ± 5.15 p.m.

ANSWER ALL QUESTIONS

Select the most correct answer/choice to each question given below. Mark a cross (X) over the most suitable answer on the given answer script. Any answer with more than one cross will not be counted.

PART A (45 marks)

- 1. Which one of the following statements is true about [Co₂(CO)₈]?
 - 1) There is no Co-Co bond in the complex.
 - 2) It has bridging carbonyl ligands when it is dissolved in an organic solution.
 - 3) Co centre does not obey the 18e rule.
 - 4) Reduction of Co(OAc)₂ with CO/H₂ gives [Co₂(CO)₈].
 - 5) In solid state it does not have bridging carbonyl ligands.
- 2. Which one is an example of an insertion reaction?
 - 1) $[Os(CO)_5] + 2 CF_2 = CF_2 \rightarrow [(OC)_4Os(C_4F_8)] + CO$ 2) $[PtH(CO)_3]I + CH_2 = CH_2 \rightarrow [PtH(\eta^2 C_2H_4)(CO)_3]I$

 - 3) $[(\eta^5-C_5H_5)MnPh(H)(CO)] + CH_2=CH_2 \rightarrow [(\eta^5-C_5H_5)MnPh(Et)(CO)]$
 - 4) $[(\eta^5-C_5H_5)Mn(CO)_3] + LiMe \rightarrow Li[(\eta^4-C_5H_5Me)Mn(CO)_3]$
 - 5) $[Pd(PPh_3)_4] + PhI \rightarrow [Pd(Ph)(I)(PPh_3)_2] + 2 PPh_3$
- 3. The correct statement regarding oxidative addition reaction is
 - 1) Valence electron count of the metal is always increased by 2 electrons.
 - 2) Coordination number of the metal is always reduced by 2 units.
 - 3) Oxidation number of the metal is always increased by 2 units.
 - 4) Oxidation number of the metal is increased by 2 units and the Coordination number of the metal is decreased by 2 units.
 - 5) None of the above statements is true.
- 4. Which statement is not true about [RhCl(PPh₃)₃]?
 - 1) It is a square planar complex.
 - 2) It is a catalyst for hydrogenation of olefins.
 - 3) Its IUPAC name is tris(triphenylphosphine)rhodium chloride.
 - 4) It reacts with O_2 to give $[RhCl(\eta^2-O_2)(PPh_3)_3]$.
 - 5) It is called "Wilkinson's Catalyst".
- 5. Most likely reaction that would take place is
 - 1) $[(\eta^6 C_6H_6)Rh(\eta^5 C_5H_5)]^+ + Ph^- \rightarrow [(\eta^6 C_6H_6)Rh(\eta^4 C_5H_5Ph)]$
 - 2) $[(\eta^5-C_5H_5)_2TiCl_2] + AlMe_3 \rightarrow [(\eta^5-C_5H_5)_2TiMe_2] + AlCl_2Me_3) [Ni(PEt_3)_3] + PhCl \rightarrow [Ni(Ph)(Cl)(PEt_3)_2] + PEt_3$

 - 4) Ni + 4 NH₃ \rightarrow [Ni(NH₃)₄]
 - 5) $[MnCF_3(CO)_5] + CO \rightarrow [Mn(COCF_3)(CO)_5]$

	(i) The nucleophilici	ty of R group decreases	as NaR	$> RMgX > LiR > ZnR_2$	
	(ii) [CoH(CO) ₄] is a I			•	
77.	(III) [COH(PEt ₃)(CO) ₃] is more basic than [Col	$I(CO)_4$	•	
111	e correct statement/s is		m> 40.		
	1) (ii) only. 4) (ii) & (iii) only.	2) (i) & (iii) only. 5) (i), (ii) & (iii).	3) (i)	& (ii) only.	
7. β - Ην	dride abstraction occur	rs in		•	
		netal is coordinatively u	neaturat <i>e</i>	ad "	
2)	compound having a m	etal-carbene group	isatui att		
	compound having a m				p '
	compound having a m				Ť
	compound having a Pl			,	
0 3371.:	1	1 (31 55 (00) 10			
o. will	ch statement is not true				
	1) Its IUPAC name is	sodium tetracarbonylferr	ate.	·	
	2) The coordination m		1 6:	. •	
4	4) Doduction - CN-TE-	model, the oxidation nun	iber of i	ron is zero.	
•		(CO) ₄] with Na gives Na	12[Fe(CC)) ₄].	
	5) Na[Fe(CO) ₄] is an 1	/e complex.			
9. Elect	rophilic attack on a coc	ordinated ligand is facilita	ated if		
		a higher oxidation state.			
		ordinatively unsaturated		=	,±:
		dinated to good o-donor			
	4) the metal is po				
		rawing groups are on coo	ordinate	d ligands.	
10. Wh	at is the product of the	reaction, $[Mn_2(CO)_{10}] +$	Na →		
	1) Na[Mn(CO) ₄]			3) $Mn_2[Na(CO)_5]$	
	4) $Na[Mn(CO)_5]$	5) Both Na[Mn(CO) ₄]	and Na[Mn(CO) ₅] are formed.	
11. Cor	sider the following stat	ements			
11.001		trans-[IrCl(CO)(PPh ₃) ₂	lic ain	·	
	(ii) Basic metal centre	s can be protonated by a	j is cis. Pide engl	n as HCl, CH ₃ CO ₂ H and CF ₃ C	Λ II
	to give metal hydri	ides	Jus suci	i as itel, eli ₃ eo ₂ n and er ₃ e	U ₂ II
		o distinguish a metal hyd	ride from	n a metal carbonyi	
The	correct statement/s is/	o distinguish a metar nyu Tare	HUC HOL	n a metar carbonyi.	
2770	1) (ii) only.	2) (i) & (ii) on	ler	3) (ii) & (iii) only.	
	4) (i) & (iii) only.	5) (i), (ii) & (ii		5) (11) & (111) only.	
12 Con	sider the following state		_ 1	FI CL/CO/(DDI) 7	
12. Con	(i) It reacts with U to	ements about the vaska	s compl	ex, $trans$ -[IrCl(CO)(PPh ₃) ₂].	ζ.
		give [Ir H ₂ Cl(CO)(PPh ₂			
		give [trans-IrCl(N ₂)(PP to give trans-[IrI(CO)(PI			
	correct statement/s is/		$n_3 j_2 j_1$.	5	
1110	1) (i) only.		23 (3)	0- (**) 1	
			3) (1) (& (ii) only.	
	4) (ii) & (iii) only.	3) (1), (11) & (111).			
13. Con	sider the following stat	ements about [RhH(CO)	al (Grou	in number of Rh is 9)	
		carbonyl band in its IR s			
	(ii) It is a tetrahedral c		5 5 5 5 5 1111	•	
		ne to give [Rh(CH ₂ CH ₂ P	h)(ሮር) _ት	1	
	correct statement/s is/		/()3	1.	
	1) (iii) only.	2) (i) & (iii) only.		3) (i) & (ii) only.	
	4) (ii) & (iii) only.			ay (a) on (any oning.	
	, , , , , , , , , , , , , , , , , , ,	- / (-/) (-/) •• (***)			

6. Consider the following statements,

- 14. Consider the following statements about metal carbonyls.
 - (i) The carbonyl stretching frequencies of doubly bridging metal carbonyls are higher than those of triply bridging ones.
 - (ii) CO stabilizes the metal centres in lower oxidation states.
 - (iii) [Ni(CO)₄] shows two carbonyl bands in its IR spectrum.

The correct statement/s is/are

- 1) (ii) only
- 2) (i) & (ii) only
- 3) (i) & (iii) only

- 4) (ii) & (iii) only
- 5) (i), (ii) & (iii)
- 15. Consider the following statements.
 - (i) [HCo(CO)₄] is a strong acid than acetic acid.
 - (ii) The oxidative addition of coordinated H₂ does not depend on the strength of the back donation.
 - (i) Metal hydrides cannot act as H⁺ donors.

The correct statement/s is/are

- 1) (i) only
- 2) (i) & (ii) only.
- 3) (i) & (iii) only.

- 4) (ii) & (iii) only.
- 5) (i), (ii) & (iii).

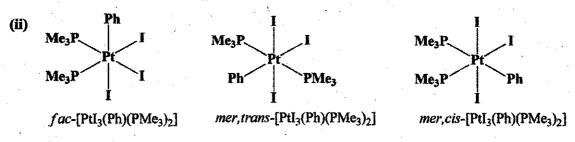
THE OPEN UNIVERSITY OF SRI LANKA
B. Sc DEGREE PROGRAMME 2017/2018
CYU5300/CMU3122 - ORGANOMETALLIC CHEMISTRY- LEVEL 5
ASSIGNMENT TEST-II (Part A)

															Pa	rt A		
eg. N	٥.							For	Exa	amin	ers	Use		. -	Pa	rt B		
					,									-	Tot	al %		ì
												Mark	s			*		
				6	Corre	ect Ans	swer	s							•			
ć				ī	von q	J Answe	ers											·
				7	otal	L												
1.	1	2	3		T = ¬	•		-T- <u>-</u>			T	1				*		
.L			.3	4	5	2.	1	2	3	4	5	3.	1	2	3	4	5	
4.	1	2	3	4	5	5.	1	2	3	4	5	6.	1	2	3	4	5	
7.	1	2	3	4	5	8.	1	2	3	4	5	9.	1	2	3	4	5	
10.	1	2	3	4	5	11.	1	2	3	4	5	12.	1	2	3	4	5	
13.	1	2	3	4	5	14.	1	2	3	4	5	15.	1	2	3	4	5	
			•	•	<u> </u>		.							L	<u> </u>		لـــــــــــــــــــــــــــــــــ	
art B ((55 i	mar	ke)										•					

Answer the questions in the space provided. Attached sheets will not be graded.

- 1. (a) (i) What is the molecular formula of the product (A) formed due to oxidative addition of PhI to [PtI₂(PMe₃)₂]?
 - (ii) Draw and identify the structures of the three isomers of (A).

(b) The alkyl Pt(II) complex alcohol (E) and aldehyde	[CH ₃ CH ₂ Pt(OMe)(dp] (F) when it is heated	ppe)] gives an alkane (C), alkene (D), in toluene at 100 °C.
Identify (C), (D), (E), and	$1 (\mathbf{F})$. (dppe = PPh ₂ Cl	H ₂ CH ₂ PPh ₂ is a bidentate ligand).
(C)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(D)
(E)	***********	(F)
(c) Arrange the complexes [N υ(C≡O). X varies from C		ecreasing order of their carbonyl frequencie
(d) Identify the product(s) of	the following reaction	ons using the hint given in the brackets.
(i) [RhH(η²-CH ₂ =CH ₂)(PPh ₃)	$_{12}$] + PPh ₃ \rightarrow 16e-	-complex (K) (association & insertion)
(ii) [(X ₃ P) ₃ IrCH ₂ C(=O)CH ₃]	$\xrightarrow{\Delta}$ 18e-comple	ex (L) (cyclometallation)
(iii) $[(\eta^5-Cp)Fe(\eta^1-CH_2CH=CH_2CH)]$	$CH_2)(CO)_2] + I_2 \rightarrow 1$	8e-complex (M) (electrophilic addition)
(K)	(L)	(M)
(e) Write on the dotted line, the following conversions		nt(s) which can be used to carry out
(i) $[Cr(CO)_5] \rightarrow [(OC$) ₄ Cr-C(=O)H]	
(ii) $[Cp_2ZrCl_2] \rightarrow [Cp_2ZrCl_2]$	'_r(C≡CPh) ₂]	
	the Ir-complex (P) an	nen [MeIr(PPh ₃) ₃] is heated in an and the write the molecular formula of the


THE OPEN UNIVERSITY OF SRI LANKA B. Sc. DEGREE PROGRAMME 2017/2018 CYU5300/CMU3122 – ORGANOMETALLIC CHEMISTRY ANSWER GUIDE FOR ASSIGNMENT TEST-II

Part A

(1) 4 (2) 3 (3) 5 (4) 3 (5) 3 (6) 4 (7) 1 (8) 3 (9) 3 (10) 4 (11) 3 (12) 2 (13) 1 (14) 2 (15) 1

Part B

1. (a) (i) [PtI₃(Ph)(PMe₃)₂]

- (b) (C) CH₃CH₃ (D) CH₂=CH₂ (E) MeOH (F) HCHO
- (c) F > Cl > OMe > Me

(d)
$$Ph_{3}P$$

$$Ph_{3}P$$

$$Ph_{3}P$$

$$Ph_{3}$$

$$Et$$

$$X_{3}P$$

$$H$$

$$PX_{3}$$

$$OC$$

$$Fe$$

$$CO$$

$$I$$

$$(K)$$

$$(M)$$

- (e) (i) NaH / LiAlH4
 - (ii) $2 \text{ MC} \equiv \text{CPh}$ M = Na, K, Li
- (f) (P) $[IrH(PPh_3)_3]$ (Q) $[IrMe(H)_2(PPh_3)_3]$