The Open University of Sri Lanka

B.Sc. Degree Programme 2011/2012

Environmental Chemistry - CHU 3122 / CHE 3122

FINAL EXAMINATION

Two (02) hours

Date: 24.11.2012

Time: 9.30 am - 11.30 am

ANSWER ANY FOUR (04) QUESTIONS

- 1. a. i. Define the terms primary pollutant and secondary pollutants as applied to environmental chemistry.
 - ii. Classify the following pollutants as primary pollutants or secondary pollutants.

NO, NO2, CO, O3 and SO2.

(20 marks)

- b. Indicating the characteristics of the regions, draw the temperature profile of the atmosphere up to an altitude of 50 km. Explain the variation of temperature within.

 (40 marks)
- c. Briefly describe the atmospheric sources, sinks and environmental effects of CO and CH₄.

(40 marks)

- 2. a. i. Write the conditions necessary for the formation of photochemical smog.
 - ii. Draw and explain the diurnal variation of concentration of components of photochemical smog on a smoggy day.
 - iii. Write equations to show the formation of ozone and PAN.

(60 marks)

- b. i. Draw the Nitrogen cycle.
 - ii. Discuss the important steps involved in nitrogen cycle.
 - iii. How will excessive use of N based fertilizers affect the natural nitrogen cycle? (40 marks)

- 3.a. i What do you mean by acid rain.
 - ii. Write the sources and sinks of SO₂ and NO_x
 - iii. Briefly describe the effects of acid rain on water bodies and materials.

(50 marks)

- b. i. Draw the variation of concentration of stratospheric ozone.
 - ii. Briefly describe the environmental effects of the use of chlorofluorocarbons in industrial applications.

(25 marks)

- c. i. Briefly explain the phenomenon, 'global warming'
 - ii. Identifying the major cause(s) of global warming, briefly describe its consequences.

(25 marks)

- 4.a. i Give the unique properties of water and their significance in biosphere.
 - ii. Lakes are generally classified into three types. What are they? What are their characteristics?

(30 Marks)

- b. i. What is meant by 'thermal stratification' of a lake?
 - ii. Draw a labelled diagram to illustrate stratification of a lake in a temperate climate, showing the typical forms of the main elements in it.

(30 marks)

- c. i. Define the term pE.
 - ii. What is the use of a pE pH diagram?
 - iii. How does pE vary with depth in a stratified lake? Explain.
 - iv. Calculate the equilibrium partial pressure of oxygen (P_{O2}) in a water sample containing equal concentrations of nitrite, NO_2 and ammonium ion, NH_4 at pH = 7.

For the half reaction of nitrite to ammonia

$$NO_2^- + 8H^+ + 6e \leftrightarrow NH_4^+ + 2H_2O$$
 $E^0 = 0.892 V$

For the half reaction involving
$$O_2$$
 reduction $4H^+ + O_2(g) + 4e \leftrightarrow 2H_2O$ $E^0 = 1.24 \text{ V}$

(40 marks)

5.a. In photosynthesis, Inorganic carbon is converted to biomass according to the following equation.

$$CO_2 + H_2O + h\gamma \rightarrow (CH_2O) + O_2$$

biomass

If the total inorganic carbon concentration (mol dm⁻³) at pH = 7 and pH = 10 are given as 1.22×10^{-3} and 6.82×10^{-4} respectively, calculate the increase of biomass at high pH. Express your answer in mg dm⁻³. [C =12; H=1; O=16]

(30 marks)

- b. i. Write down the mathematical expression for the Henry's Law and identify the terms in it.
 - ii. Calculate the pH of a solution of ammonia in equilibrium with NH₃ gas having a partial pressure of 5.06×10^3 Pa at 25° C. For NH₃, Henry's law constant, K_H is 5.7×10^{-4} mol dm⁻³ Pa⁻¹; K_b for

$$NH_3 + H_2O \leftrightarrow NH_4^+(aq) + OH^-$$
 is 1.8×10^{-5} mol dm⁻³.

(30 marks)

- c. i Define the terms BOD and COD.
 - ii. What is the BOD of water in which 10 mg of sugar (empirical formula, CH₂O) is dissolved in a litre?
 - iii. Why do the COD analysis and BOD₅ analysis usually give different results for the same wastewater?

(40 marks)

- 6. a. i. Define the term 'Alkalinity'
 - ii. Titration of 100 ml of river water with 0.100 M HCl solution consumes 2.85 ml HCl to the methyl orange equivalence point. Calculate the total alkalinity in
 - equivalent of acid per litre (eq L⁻¹)
 - mg L⁻¹ CaCO₃

(30 marks)

- b. i Write two examples of each of linear and ring poly phosphates.
 - ii. Give two uses of polyphosphates in industry.
 - iii. Show by chemical equation the ultimate product of polyphosphate hydrolysis.
 - iv. Briefly describe the environmental consequence resulting from the presence of significant amount of phosphate in water.

(20 marks)

- c. i. What is hard water?
 - ii. Differentiate between temporary and permanent hardness.
 - iii. A 25 cm³ of tap water is titrated against 0.1 mol dm⁻³ EDTA solution to the Eriochrome black T indicator end point. This requires 14.40 cm³ of EDTA solution. Calculate the hardness of water in ppm of Ca²⁺.

(30 marks)

d. List four metal ions that may be present in a waste water system. Indicate their sources in industry.

(20 marks)