

THE OPEN UNIVERSITY OF SRI LANKA

B.Sc. Degree Program -Level 5

Final Examination -2011/2012

CMU 3233 / CHU 3238 / CHE 3238-Polymer Chemistry

Date: 03rd December 2012

9.30am-12.30pm

Instructions to candidátes:

- This paper consists of two parts, Part I (MCQ) and part II (essay type).
- Part I consists of 25 MCQs, recommended time to complete this part is 1 hour.
- Part II consists of six essay type questions. You are expected to answer four questions including one compulsory question (Q1). Recommended time to complete this part is 2 hours.

For MCQs

- · Answer all questions.
- Choose the most correct answer to each question and mark a cross" X" over the answer on the given answer sheet.
- Use a PEN (not a pencil) in answering.
- Any answer with more than one cross will not be counted.
- 1/6th marks will be deducted for each incorrect answer
- The use of a non programmable electronic calculator is permitted.

PART I (35 marks)

- 01. Repeating unit of polyethylene is
- 1. CH₂=CH₂
- 2. -[-CH₂-CH₂-]-
- 3. -[-CH₂-CH₂-]_n-
- 4. (CH₂=CH₂)_n

- $5.-[-CH_2=CH_2-]-n^2$
- 02. What is the functionality of CH₃-CH=CH₂
- 1.0
- 2. 1
- 3. 2
- 4.3
- 5.4

- 03. Examples of anionic initiators are
- a) KNH₂
- b) BuLi
- c) BF₃
- d) HCl

The correct statement/s is/are

- 1. a & b only
- 2. b & c only
- 3. c & d only
- 4. a, b & c only
- 5. All of above

- 04. What statement is not true about Zieglar-Natta catalyst?
- 1. It is mainly used to produce stereo-regular polymers.
- 2. It is specially used in the polymerization of olefins.
- 3. It consists of catalyst only.
- 4. It consists of catalyst and co-catalyst only.
- 5. It catalyzes coordination polymerization only.
- 05. Essential ingredient/s for emulsion polymerization is/are
- 1. monomers
- 2. emulsifying agents 3. water
- 4.water soluble initiators
- 5. All of above

- 06. Example/s for stereo-regular polymers is/are
- a) atactic polymers
- b) isotactic polymers
- c) syndiotactic polymers

The correct statement/s is/are

- 1. a only
- 2. b only
- 3. c only
- 4. a & b only
- 5. b & c only

- 07. Above flow temperature, the polymeric material is in
- 1. rubbery state
- 2. visco-elastic state
- 3. visco-fluid state
- 4. solid state
- 5. glassy state

- 08. Crystalline melting point (T_m) can be determined by
- a) thermal analysis b) X-Ray diffraction
- c) Infra-red spectroscopy
- d) NMR spectroscopy

The correct statement/s is/are

- 1. a & b only
- 2. b & c only
- 3. c & d only
- 4. a, b & c only
- 5. All of above
- 09. In a polymeric material, the ratio of crystalline to amorphous depends on
- a) rate of cooling
- b) chemical nature
- c) rate of mixing
- d) temperature of cooling

The correct statement/s is/are

- 1. a & b only
- 2. b & c only
- 3. c & d only
- 4. a, b & d only
- 5. All of above

- 10. In dilatometry method,
- 1. density change is measured at various temperature.
- 2. volume change is measured at various temperature.
- 3. temperature change is measured at various molar masses.
- 4. viscosity change is measured at various molar masses.
- 5. variation of pressure is measured at different temperatures.
- 11. What is true about a polydispersed polymer sample?

- 1. $\overline{M}_n > M_v > \overline{M}_w$ 2. $\overline{M}_n = M_v = \overline{M}_w$ 3. $M_v > \overline{M}_u > \overline{M}_w$
- 4. $\overline{M}_{W} > M_{v} > \overline{M}_{n}$ 5. $M_{v} = \overline{M}_{n} > \overline{M}_{W}$
- 12. Light scattering method is used to determine
- 1. number average molar mass. 2. weight average molar mass. 3. viscosity average molar mass
- 4. intrinsic viscosity.
- 5. solubility of polymer.

, the nature of	of the polymer.	2. the nature	of the solvent.	3. the rate of mixing.	
4. the concent	tration of the po	lymer. 5.al	l of above.		
•. •			oolymerization of ethylene molecule	1000 and the –C-C- bond le	ength
1. 375 nm	2. 126 nm	3. 1260 nm	4. 3750 nm	5. 1620 nm	
				•	
15. Polymer i	s soluble only if	•			•
a) $\Delta G_{\rm m} < 0$	b) ΔH _m > T	ΔS _m c) ΔC	$G_{\rm m} > 0$ d) Δ	$AH_m < T\Delta S_m$	
The correct st	atement/s is/are				
l. a only	2. a & b only	3. c & d only	4. a & d o	only 5. c only	
			•		
16. Polymer o	legradation may	occur by			
I. heat.	2. radiation.	3. mechanic	al stress. 4. h	ydrolysis. 5 all of above	: .
				·	
17. What state	ement is true ab	out thermoplastic	s?		
				3. Cannot be soften by hea	ıting.
i. Insoluble ii	n any solvent.	5. Formed	by step growth po	lymerization.	
10 D	P 1				
_	astication of pol	•	,		
ı) molar mass		·	mass decreases.	c) viscosity decrease	2S
l) molar mass	s remains uncha	nged.			
				,	
The correct st	atement/s is/are				
I. a only	2. b only 3	3. a & c only	4. b & c only	5. d only	
				•	

13. The viscosity of a dilute polymer solution depends on

- 19. What statement is not true about poly(vinyl chloride)?
- 1. It is formed by suspension polymerization of vinyl chloride monomers.
- 2. It is formed by emulsion polymerization of vinyl chloride monomers.
- 3. Majority of PVC is formed by bulk polymerization of vinyl chloride monomers.
- 4. It is slightly branched or linear polymers.
- 5. It is resistant to many chemicals.

- 20. What is true about plasticizers?
- 1. They are high molecular weight compounds.
- 2. They are volatile substances.
- 3. They are added to polymers to improve flexibility.
- 4. They increase the glass transition temperature.
- 5. They are mostly solids.
- 21. Polydispersity factor can be expressed as

$$1. \ \frac{1}{(1-P)}$$

1.
$$\frac{1}{(1-P)}$$
 2. $\frac{1}{(1+P)}$ 3. $(1+P)$ 4. $(1-P)$ 5. $\frac{1}{(1+P)^2}$

3.
$$(1 + P)$$

$$5. \ \frac{1}{(1+P)}$$

- 22. With certain assumptions, the order of free radical polymerization with respect to monomer concentration is confirmed experimentally as
- 1. zero or first order
- 2. first order.
- 3. zero order
- 4. second order.

- 5. first or second order.
- 23. Kinetic chain length (v) can be expressed as
- 1. v = rate of initiation.
- 2. v = rate of propagation.
- 3. v = rate of termination.
- 4. v = rate of initiataion/ rate of propagation
- 5. v = rate of propagation/rate of initiation.

24. Rate equation for anionic polymerization of styrene is

$$1. \frac{-d[M]}{dt} = \frac{k_{tr}[NH_3]}{k_{r}[I][M]}$$

$$2. \frac{-d[M]}{dt} = \frac{k_i [M]^2}{k_p [NH_3]}$$

1.
$$\frac{-d[M]}{dt} = \frac{k_{ir}[NH_3]}{k_{ir}[I][M]}$$
 2. $\frac{-d[M]}{dt} = \frac{k_{i}[M]^2}{k_{ir}[NH_3]}$ 3. $\frac{-d[M]}{dt} = \frac{k_{i}k_{ir}[I][M^2]}{k_{ir}[NH_3]}$

4.
$$\frac{-d[M]}{dt} = \frac{k_p[NH_3]}{k_p[I]}$$

4.
$$\frac{-d[M]}{dt} = \frac{k_n[NH_3]}{k_n[I]}$$
 5. $\frac{-d[M]}{dt} = \frac{k_n[I]^2[M]}{k_n[NH_3]}$

25. In free radical polymerization, termination reaction can occur by

- 1. combination.
- 2. disproportionation.
- 3. transfer to solvents.
- 4, transfer to modifier

5. all of above.

PART II (65 marks)

Explain.

- 01. (a) i. What are linear polymers? How do they differ from branched polymers?
 - ii. What are the major differences between polymers and simple molecules?
 - iii. How does chain polymerization differ from step growth polymerization? List few of them.
 - (b) i. What is meant by glass transition temperature? What is the importance of it?ii. T_g value of polyacrylonitrile is higher than the corresponding value of polyethylene.
 - iii. How do you distinguish monodispersed system from polydispersed system?
 - (c) i. How does autocoagulation take place in natural rubber latex? How do you prevent autocoagulation?
 - ii. How do you coagulate natural rubber latex when needed?
 - (d) i. What do you mean by ceiling temperature? Explain.
 - ii. What are the methods that can be used to determine the rate of polymerization.
- 02. (a) Write down initiation steps for free radical, cationic and anionic initiation for CH₂=CHCH₃.
 - (b) i. "There are many ways of termination take place in free radical polymerization" What are they? Explain.
 - ii. How do these termination steps in free radical polymerization differ from cationic polymerization?
 - (c) i. What are copolymers? By giving examples, explain different types of copolymers.
 - ii. What are the importance of copolymers?

- 03. (a) How do you distinguish homo polymers from hetero polymers? Give examples for each:
 - (b) "Optical isomerism is possible not only in vinyl polymers" Justify your answers using examples.
 - (c) Explain how plasticizers change the value of glass transition temperature.
 - (d) i. What are the factors that affect the crystallinity and the melting point of polymers? Discuss.
 - ii. Densities of amorphous rubber and 100% crystalline rubber are 850 kgm⁻³ and 950 kgm⁻³ respectively. If the density of crystalline rubber increases by 5% that of amorphous rubber, calculate the degree of crystallinity in crystalline rubber?
- 04. (a) A polyethylene sample consists of three fractions having molar ratios of 3:2:1. Molar masses of these fractions are 2×10⁶, 3×10⁶ and 5×10⁶ respectively. Calculate the followings.
 - i. Number aerage molar mass, \overline{M}_n .
 - ii. Weight average molar mass, \overline{M}_{W} .
 - iii. The $|\overline{D}_r|_{r}$ value of polyethylene.
 - (b) 1.0504g of polyamide sample was neutralized by 5.05 cm³ of 0.1023 moldm⁻³ of alcoholic potassium hydroxide solution. Calculate the number average molar mass of polyamide sample.
- 05. (a) i. What are the constituents of natural rubber latex?
 - ii. How do you produce concentrated latex? Explain.
 - iii. What is meant by yellow discoloration? What are the ways of removing it? Explain.
 - (b) i. What do you mean by "compounding" in rubber industry?
 - ii. What are the requirements of rubber to be vulcanized with sulphur?
 - iii. What are the essential chemicals required for vulcanization of rubber with sulphur?
 - (c) What is meant by photodegradation? How do you prevent this? Explain.

06. (a) Modified Carother's equation is given as follows.

$$\overline{X}_n = \frac{1+r}{1+r-2rp}$$

- i. Identify terms of above expression.
- ii. When equal stoichiometric ratios of two monomers present, deduce the Carother's equation from above expression.
- (b) i. In the preparation of Nylon 6:6, hexamethylene diammine and adipic acid are used. If 3% more hexamethylene diammine is used, calculate the degree of polymerization. Assume that the percent conversion is 100%.
 - ii. If equimolar ratios of above two monomers use, what will be the molar mass of Nylon 6;6. Assume that the percent conversion is 99%.
- (c) What would be the effect of impurities on the degree of polymerization of polycondensation reactions.