The Open University of Sri Lanka B.Sc. Degree Programme –Level05 Department of Mathematics and Computer Science Final Examination-2011/2012 CSU3275/PMU3293-Automata Theory Duration: Three hours Date: 01.12.2012 Time: 1.30pm-4.30pm ## Answer FOUR questions only. 01. (a) Let Σ be an alphabet and w be any string over Σ . Explain the meaning of w^n for any positive integer n. Show that $(w^n)^R = (w^R)^n$; where x^R denotes the reversal of string x. You may assume that $(xy)^R = y^R x^R$ for any two strings x and y. [Hint: use the mathematical induction on n.] (b) Define a language L over an alphabet Σ . Let L_1 and L_2 be the languages over $\Sigma = \{a, b\}$ defined by $L_1 = \{ w \in \Sigma^* \mid w \text{ begins with a } b \text{ and rest of the symbols (if exist) are } a's \}$ $L_2 = \{ w \in \Sigma^* \mid w \text{ consists of an odd number of } b's \}$ What is $L_1 \circ L_2$, the concatenation of L_1 and L_2 ? Justify your answer. - (c) Check whether the languages generated by each of the following pairs of expressions are identical or not. Justify your answer. - (i) $a(a^* \cup b^*)$ and $a(a \cup b)^*$ - (ii) $(a(a^* \cup b^*))^*$ and $a(a \cup b)^*$ - (iii) $a(a^* \cup b^*)^*$ and $a(a \cup b)^*$ - 02. (a) Define a deterministic finite automaton (DFA) and describe two applications of it. Let M be a DFA and w be a string. Describe the operation of M when it is switched on with the string w on the input tape. Prove or disprove $\delta^*(s, xy) = \delta^*[\delta^*(s, x), y]$; where x, y are any two strings and s is a state of M. (b) Design a DFA to accept the language defined by $$L_1 = \{ w \in \{0, 1\}^* \mid 110 \text{ is a substring of } w \}$$ Test your DFA with the following input strings. - (i) 011100 - (ii) $1110^n 1$; *n* is a positive integer (iii) 110* 03. (a) What is a nondeterministic finite automaton (NFA)? Describe how it differs from a deterministic finite automation. Define the language accepted by an NFA. Express, in natural language, the language accepted by the NFA given in Fig. 3.1? Fig 3.1 (b) Let M_1 be the Mealy machine defined in Table 3.1. | | $\delta(s,i)$ | | $\beta(s,i)$ | | | |---|---------------|----------------|--------------|---|--| | | 0 | 1 | 0 | 1 | | | а | а | \overline{b} | S | t | | | ь | b | а | t | 1 | | Table 3.1 - (i) Obtain a Mealy machine M_2 in such a way that M_1 is isomorphic to M_2 . - (ii) Assume that M_1 and M_2 have been started in their corresponding states. Compare the behaviour of these two machines if the same input sequence is given to them. - 04. (a) Define the behavioural equivalence between two Mealy machines. Let M_1 and M_2 be two Mealy machines. Show that - (i) M_1 is behaviourally equivalent to itself. - (ii) If M_1 is behaviourally equivalent to M_2 , then M_2 is behaviourally equivalent to M_1 . - (b) Define the homomorphism of a Mealy machine into another Mealy machine. Let M_1 and M_2 be two Mealy machines defined in Table 4.1 and Table 4.2 respectively. Table $$4.1 - M_1$$ Table $4.2 - M_2$ Let the triple $\phi = (\alpha, \sigma, \theta)$ be defined by $$\alpha(s_1) = t_2, \ \alpha(s_2) = t_1$$ $\sigma(i_1) = j_1, \ \sigma(i_2) = j_2$ $\theta(p_1) = o_2, \ \theta(p_2) = o_1$ Is ϕ a state behaviour assignment? Justify your answer. - 05. Let $M_1 = (S_1, I_1, O_1, \delta_1, \beta_1)$ and $M_2 = (S_2, I_2, O_2, \delta_2, \beta_2)$ be two Mealy machines, and let κ be a function from O_1 to I_2 . Define. - (i) The parallel composite $M_1 \parallel M_2$ of M_1 and M_2 . - (ii) The serial composite $M_1 \oplus_{\kappa} M_2$ of M_1 and M_2 with respect to κ . Let *M* be the Mealy machine defined in Table 5.1. Table 5.1 Construct $(M \parallel M) \oplus_{\kappa} M$, where $\kappa: \{p, q\} \times \{p, q\} \rightarrow \{0, 1\}$ defined by $$\kappa(p, p) = 0 = \kappa(p, q), \ \kappa(q, p) = 1 = \kappa(q, q)$$ 06. Define the SP partition of states of a Mealy machine. Let M be the Mealy machine whose transitions and outputs are defined in Table 6.1. | | $\delta(s, i)$ | | | $\beta(s,i)$ | | | | |-------|-----------------------|------------|------------|------------------|-------|-------|--| | | i_1 | i_2 | i_3 | i_1 | i_2 | i_3 | | | Si | 52 | S 4 | <i>S</i> 2 | . O ₂ | 03 | 02 | | | s_2 | <i>S</i> ₆ | s_1 | s_5 | o_1 | o_2 | o_3 | | | S_3 | <i>S</i> ₆ | s_2 | S4 | 02 | o_1 | o_2 | | | s_4 | s_1 | S5 | s_3 | 02 | o_1 | 02 | | | \$5 | Sı | s_6 | s_2 | o_1 | o_2 | 03 | | | s_6 | \$5 | s_4 | s_5 | 02 | 03 | o_2 | | Table 6.1 Let $\pi = \{\{s_1, s_6\}, \{s_2, s_5\}, \{s_3, s_4\}\}.$ - (i) Show that π is an SP partition of M. - (ii) Show that π is output consistent. - (iii) Find another SP partition of M, different from π above, which consists of at least three elements and at most four elements. - (iv) Construct the quotient machine $\frac{M}{\pi}$. ***All Rights Reserved***