The Open University of Sri Lanka
B.Sc. Degree Programme –Level05
Department of Mathematics and Computer Science
Final Examination-2011/2012

CSU3275/PMU3293-Automata Theory

Duration: Three hours

Date: 01.12.2012 Time: 1.30pm-4.30pm

Answer FOUR questions only.

01. (a) Let Σ be an alphabet and w be any string over Σ . Explain the meaning of w^n for any positive integer n.

Show that $(w^n)^R = (w^R)^n$; where x^R denotes the reversal of string x. You may assume that $(xy)^R = y^R x^R$ for any two strings x and y. [Hint: use the mathematical induction on n.]

(b) Define a language L over an alphabet Σ .

Let L_1 and L_2 be the languages over $\Sigma = \{a, b\}$ defined by

 $L_1 = \{ w \in \Sigma^* \mid w \text{ begins with a } b \text{ and rest of the symbols (if exist) are } a's \}$ $L_2 = \{ w \in \Sigma^* \mid w \text{ consists of an odd number of } b's \}$

What is $L_1 \circ L_2$, the concatenation of L_1 and L_2 ? Justify your answer.

- (c) Check whether the languages generated by each of the following pairs of expressions are identical or not. Justify your answer.
 - (i) $a(a^* \cup b^*)$ and $a(a \cup b)^*$
 - (ii) $(a(a^* \cup b^*))^*$ and $a(a \cup b)^*$
 - (iii) $a(a^* \cup b^*)^*$ and $a(a \cup b)^*$
- 02. (a) Define a deterministic finite automaton (DFA) and describe two applications of it.

Let M be a DFA and w be a string. Describe the operation of M when it is switched on with the string w on the input tape.

Prove or disprove $\delta^*(s, xy) = \delta^*[\delta^*(s, x), y]$; where x, y are any two strings and s is a state of M.

(b) Design a DFA to accept the language defined by

$$L_1 = \{ w \in \{0, 1\}^* \mid 110 \text{ is a substring of } w \}$$

Test your DFA with the following input strings.

- (i) 011100
- (ii) $1110^n 1$; *n* is a positive integer

(iii) 110*

03. (a) What is a nondeterministic finite automaton (NFA)? Describe how it differs from a deterministic finite automation.

Define the language accepted by an NFA. Express, in natural language, the language accepted by the NFA given in Fig. 3.1?

Fig 3.1

(b) Let M_1 be the Mealy machine defined in Table 3.1.

	$\delta(s,i)$		$\beta(s,i)$		
	0	1	0	1	
а	а	\overline{b}	S	t	
ь	b	а	t	1	

Table 3.1

- (i) Obtain a Mealy machine M_2 in such a way that M_1 is isomorphic to M_2 .
- (ii) Assume that M_1 and M_2 have been started in their corresponding states. Compare the behaviour of these two machines if the same input sequence is given to them.
- 04. (a) Define the behavioural equivalence between two Mealy machines.

Let M_1 and M_2 be two Mealy machines. Show that

- (i) M_1 is behaviourally equivalent to itself.
- (ii) If M_1 is behaviourally equivalent to M_2 , then M_2 is behaviourally equivalent to M_1 .
- (b) Define the homomorphism of a Mealy machine into another Mealy machine.

Let M_1 and M_2 be two Mealy machines defined in Table 4.1 and Table 4.2 respectively.

Table
$$4.1 - M_1$$

Table $4.2 - M_2$

Let the triple $\phi = (\alpha, \sigma, \theta)$ be defined by

$$\alpha(s_1) = t_2, \ \alpha(s_2) = t_1$$

 $\sigma(i_1) = j_1, \ \sigma(i_2) = j_2$
 $\theta(p_1) = o_2, \ \theta(p_2) = o_1$

Is ϕ a state behaviour assignment? Justify your answer.

- 05. Let $M_1 = (S_1, I_1, O_1, \delta_1, \beta_1)$ and $M_2 = (S_2, I_2, O_2, \delta_2, \beta_2)$ be two Mealy machines, and let κ be a function from O_1 to I_2 . Define.
 - (i) The parallel composite $M_1 \parallel M_2$ of M_1 and M_2 .
 - (ii) The serial composite $M_1 \oplus_{\kappa} M_2$ of M_1 and M_2 with respect to κ .

Let *M* be the Mealy machine defined in Table 5.1.

Table 5.1

Construct $(M \parallel M) \oplus_{\kappa} M$, where $\kappa: \{p, q\} \times \{p, q\} \rightarrow \{0, 1\}$ defined by

$$\kappa(p, p) = 0 = \kappa(p, q), \ \kappa(q, p) = 1 = \kappa(q, q)$$

06. Define the SP partition of states of a Mealy machine.

Let M be the Mealy machine whose transitions and outputs are defined in Table 6.1.

	$\delta(s, i)$			$\beta(s,i)$			
	i_1	i_2	i_3	i_1	i_2	i_3	
Si	52	S 4	<i>S</i> 2	. O ₂	03	02	
s_2	<i>S</i> ₆	s_1	s_5	o_1	o_2	o_3	
S_3	<i>S</i> ₆	s_2	S4	02	o_1	o_2	
s_4	s_1	S5	s_3	02	o_1	02	
\$5	Sı	s_6	s_2	o_1	o_2	03	
s_6	\$5	s_4	s_5	02	03	o_2	

Table 6.1

Let $\pi = \{\{s_1, s_6\}, \{s_2, s_5\}, \{s_3, s_4\}\}.$

- (i) Show that π is an SP partition of M.
- (ii) Show that π is output consistent.
- (iii) Find another SP partition of M, different from π above, which consists of at least three elements and at most four elements.
- (iv) Construct the quotient machine $\frac{M}{\pi}$.

All Rights Reserved