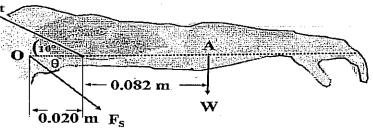
The Open University of Sri Lanka B.Sc. Degree Programme (Level 05) 2011/12

Final Examination —Biophysics —PYU3165/PYE5165

Duration: Two Hours (2 hrs)

Date 28th December 2011


Time 9.30 am - 11.30 am

Answer Four (4) questions only

Use the following values when necessary, Plank's constant = 6.63×10^{-34} J S, charge of an electron = 1.6×10^{-19} C, mass of the electron = 9.1×10^{-31} kg, $1eV=1.6 \times 10^{-9}$ J and 1J=1 kg m² s⁻². Universal gas constant =R = 8.3 J mol $^{-1}$ K⁻¹

- 1.(a) What is "BMR"?
- (b) What are the factors that influence BMR?

(c) List the types of levers and write an example of each which you can find in the human body.

- (d) The arm in the figure weighs 45 N. The weight of the arm acts through point A. Determine the magnitudes of the tension force \mathbf{F}_t in the deltoid muscle and the force \mathbf{F}_s of the shoulder on the humerus to hold the arm in the position shown.
- **2.** (a) Describe *Myopia* (shortsightedness) and *Hypermetropia* (longsightedness). How are they corrected?
- (b). A long sighted eye has a "far point" at infinity and a "near point" which is 35 cm from the eye. State the type of lens needed to correct this defect and calculate the power of the correcting lens.
- (c). (i). Write down the expression for intensity level of a sound at a given point.
 - (ii). What is the decibel (dB) value of a sound with the intensity 10^{-8} W m⁻²?
- (iii). Intensity value of part (ii) is observed with the distance 10 m from the source. Find the distance to the point with intensity level 60 dB from the source?.

- 3.(a) There are different kinds of interactions that keep atoms together when forming a molecule. List three types of interactions and compare two types of them giving an example for each case.
- (b) What is meant by bond energy?
- (c) When water molecules are placed with non-polar molecules (such as hydrocarbons), would the water molecules experience any hydrogen bonding with the non polar molecules with each other? Why? Give your answer briefly.
- (d) Why ionic solutes such as sodium chloride (NaCl) generally dissolve in polar solvents but not in non-polar solvents?. Give brief explanation.
- 4. (a) State briefly 1st and 2nd laws of thermodynamics with their differential forms.
 - (b) Explain following terms and draw the P-V graphs for each
 - (i) An isothermal expansion
 - (ii) An adiabatic expansion
 - (iii) An isobaric compression
- (c) One mole of an ideal monatomic gas, initially at a volume of 0.05 m³ and a pressure of 1.0 x 10⁵ Pa, is taken through a reversible cycle that consists of three processes:
 - $a \rightarrow b$: An isobaric compression that decreases the volume from 0.05 m³ to 0.01 m³
 - b-->c: An isochoric process where the pressure goes from 1.0 x 10⁵ Pa to 5.0 x 10⁵ Pa
 - c->a: An isothermal expansion that returns the system to its original state.
- (i). Show the cycle on a P-V graph, labeling all three processes. Be sure to label the axes with appropriate scales, units, etc.
- (ii). Find the net work done by the gas per cycle?
- (iii). Find the heat added to the gas per cycle?

Ctd..

- 5. (a). What is Sedimentation ?. Name one of the well known experiments done in the lab which tests the rate of sedimentation of *erythrocytes* in blood.
- (b). A blood cell having a density ρ_B and a radius r falls with a terminal velocity, V_t through a liquid of viscosity η and the density ρ_L . Derive an expression for the terminal velocity V_t with the help of a Stokes formula for the drag of a blood cell in a liquid.
- (c). (i). Calculate the terminal settling velocity V_t of a 70 micrometer diameter sphere of density 2600 kg m⁻³ in water (Density of water: 1000 kg m⁻³ and the viscosity: 1×10^{-3} Nsm⁻².)
 - (ii) .What is the new terminal velocity for a sphere of twice this diameter?
- 6. (a) An electron is accelerated through a potential difference of 64 volts. What is the *De Broglie* wavelength associated with It.? To which part of the electromagnetic spectrum does this value of wavelength corresponds?
- (b) Draw a cubic unit cell indicating the locations of (011) (111) and (010). Label the axes.
- (c) X-rays of wavelength 0.0153 nm are scattered from the (211) plane of a sample of protein, which has a simple cubic structure. Adjacent diffraction peaks are observed at scattering angles of 28° and 45°. Calculate the lattice constant of the protein.

