THE OPEN UNIVERSITY OF SRI LANKA

B.Sc. /B.Ed. Degree Programme

APPLIED MATHEMATICS-LEVEL 05

ADU5306/APU3150- Fluid Mechanics

FINAL EXAMINATION 2017/2018

Duration: Two Hours

Date: 30.03.2019

Time: 09.30 a.m- 11.30 a.m

Answer FOUR questions only. Standard notation are used throughout this paper.

1. The velocity vector in a flow field is given by

$$\mathbf{q} = \frac{k^2(-y\mathbf{i} + x\mathbf{j})}{x^2 + y^2} \quad (k = \text{constant}).$$

- (a) Show that the motion is a possible motion for an incompressible fluid.
- (b) Determine the equations of streamlines.
- (c) Show that the motion is of potential kind.
- (d) Determine the velocity potential.
- (e) Sketch the streamlines and equipotentials.
- 2. (a) In an incompressible fluid the vorticity at every point is constant in magnitude and direction. Show that the components of velocity u, v, w are solutions of Laplace's equation.

- (b) Find the vorticity vector of the fluid motion for the given velocity components: $v_r = \left(1 \frac{A}{r^2}\right) \cos \theta$, $v_\theta = -\left(1 + \frac{A}{2r^3}\right) \sin \theta$, $v_\phi = 0$, where A is a constant.
- (c) A velocity field is given by $\mathbf{q} = -x\mathbf{i} + (y+t)\mathbf{j}$. Find the stream function and the stream lines for this field at t = 2.
- 3. (a) Given Euler's equation of motion $\underline{\mathbf{F}} \frac{1}{\rho} gradp = \frac{D\mathbf{q}}{Dt}$ for a perfect fluid, show that it can be written in the form $\underline{\mathbf{F}} \frac{1}{\rho} gradp = \frac{\partial \mathbf{q}}{\partial t} + grad\left(\frac{q^2}{2}\right) \underline{\mathbf{q}} \times curl\underline{\mathbf{q}}$.
 - (b) Using the result in Part (a), derive Bernoulli's equation for irrotational motion of an inviscid homogeneous fluid of constant density.
 - (c) Consider a horizontal nozzle discharging into the atmosphere. The inlet has a bore area of $500 \, mm^2$ and the exit has a bore area of $250 \, mm^2$. Assuming there is no energy loss calculate the flow rate when the inlet pressure is $400 \, Pa$.
- 4. A venturi meter is an instrument to measure the fluid velocity in pipes. The flow rate of a fluid in conduit and the discharge of a fluid flowing in a pipe may also be measured. The venturi meter is made up of a constant cross-section S_1 tapering to a section of smaller cross-section S_2 (also known as throat) and then gradually expanding to the original cross-section as shown in the Figure 1. A U-tube serving as a mercury manometer is attached to connect the board and narrow sections at A and B. Let q_1 and q_2 be the fluid velocities and p_1 and p_2 be the pressures at A and B respectively. Let ρ and σ be densities of the fluid and the mercury respectively.
 - (a) Find the velocity, q_1 of the fluid in terms of S_1, S_2, h, ρ and σ .
 - (b) Find the flow rate of the fluid flowing through the board section at A, in terms of S_1, S_2, h, ρ and σ .

Figure 1: A veturi meter

- 5. (a) State the Navier-Stokes equation for a viscous incompressible fluid with constant viscosity.
 - (b) Show that for an incompressible steady flow with constant viscosity, the velocity components

$$u(y) = y\frac{U}{h} + \frac{h^2}{2\mu} \left(-\frac{dp}{dx} \right) \frac{y}{h} \left(1 - \frac{y}{h} \right), \quad v = 0, \quad w = 0,$$

where h, U, dp/dx are constants and p = p(x), satisfy the equation of motion, when the body force is neglected.

- 6. The complex potential of a fluid flow is given by $W(z) = 5\left(z + \frac{4}{z}\right)$.
 - (a) Obtain the equation for the streamlines and velocity potential lines and represent them graphically.
 - (b) Find the complex velocity at any point and determine its value far from the origin.
 - (c) Find the stagnation points of the flow.