The Open University of Sri Lanka
B.Sc. Degree Programme — Level 04
Final Examination 2007/2008
Pure Mathematics
PMU 2194/PME 4194 — Number Theory & Polynomials

ik ti oldjantomi

109

Duration: - Two and Half (2 1/2) Hours.

Date: 01-07-2008.

Time:- 10.00 a.m. - 12.30 p.m.

Answer Four Questions Only.

- 01. (a) Show that $\mathbb{Z} = \mathbb{N} \cup (-\mathbb{N}) \cup \{0\}$, where \mathbb{Z} is the set of integers and \mathbb{N} is the set of natural numbers.
 - (b) Let $z_1, z_2 \in \mathbb{Z}$. Prove the following.
 - (i) $z_1+z_2 \in \mathbb{Z}$
 - (ii) z_1 - $z_2 \in \mathbb{Z}$
 - (iii) $z_1.z_2 \in \mathbb{Z}$
 - (c) If $a, b \in \mathbb{Z}$ and ab = 1 then prove that |a| = 1 and |b| = 1. (Hint: if $n \in \mathbb{N}$ then $n \ge 1$)
- 02. (a) Let $S = \mathbb{N}$ and $T = \{2n : n \in \mathbb{N}\}$. Show that there is a bijection between S and T.
 - (b) Let S, T and U be any three subsets of the set of integers. Prove that
 - (i) if $S \sim T$ and $T \sim U$ then $S \sim U$.
 - (ii) if $S \sim T$ then $T \sim S$.
 - (iii) if $S \sim T$, then S is finite if and only if T is finite.
 - (iv) if $S \sim T$, then S is denumerable if and only if T is denumerable.
 - (c) Prove that $x^n y^n$ is divisible by x + y, when n is an even positive integer.
- 03. (a) Find the greatest common divisor of 4203 and 207. Express it in the form 4203m+ 207n with suitable integers m and n.Find the least common multiple of 4081 and 319.
 - (b) Prove that, if $a, b \in \mathbb{Z}$ with at least one of them non-zero then a and b have a unique greatest common divisor d which can be expressed in the form

d = am + bn with $m, n \in \mathbb{Z}$.

(Hint: If S is a non-empty subset of \mathbb{Z} such that S is closed under the subtraction, then $S = \{0\}$ or S contains a least positive integer d such that $S = \{nd : n \in \mathbb{Z}\}$.)

- (c) Prove that,
 - (i) if $a + c \equiv b + c \pmod{m}$, then $a \equiv b \pmod{m}$
 - (ii) if $ac \equiv bc \pmod{m}$ and (c, m) = 1, then $a \equiv b \pmod{m}$
 - (iii) if $ac \equiv bc \pmod{m}$ and (c, m) = d, then $a \equiv b \pmod{m_1}$ where $m = m_1 d$.
- 04.(a) Define the greatest common divisor of two polynomials.

Let F be a field and let f, $g \in F[x] - \{0\}$. Show that f and g have a unique greatest common divisor d = (f, g) in F[x] and d can be expressed in the form, d = fu + gv with u, $v \in F[x]$.

- (b) Find the greatest common divisor d of $f(x) = x^4 + 2x^3 + 3x^2 + 2x + 1$ and $g(x) = x^3 + 3x^2 + 3x + 2$ in $\mathcal{Q}[x]$ and express it in the form d = fu + gv with $u, v \in \mathcal{Q}[x]$ where \mathcal{Q} is the set of rational numbers.
- 05.(a) (i) Let F be a field and let f(x) be a quadratic or cubic polynomial in F[x]. Prove that f is irreducible if $f(\alpha) \neq 0$ for all $\alpha \in F$.
 - (ii) Discuss the irreducibility of $f(x) = x^3 + x + 1$ in $\mathbb{Z}_5[x]$.
 - (iii) Give a counter example to show that the above result in not true if deg f > 3.
 - (b) (i) Let $f(x) = \sum_{i=0}^{n} a_i x^i \in \mathbb{Z}[x]$ and $n \ge 1$. Show that if $\alpha \in \mathbb{Q}$ is a zero of f(x) and $\alpha = \frac{r}{s}$ with (r, s) = 1, then $r \mid a_0$ and $s \mid a_n$.
 - (ii) Find the rational roots if any in \mathbb{Q} of $f(x) = 36x^4 13x^2 + 1$.
- 06.(a) Let $f(x) \in \mathbb{R}[x]$ such that $\deg f(x) \ge 1$ and let $\alpha \in \mathcal{C}$ such that $f(\alpha) = 0$. Show that $f(\overline{\alpha}) = 0$, where $\overline{\alpha}$ is the conjugate of α , where \mathbb{R} is the set of real numbers and \mathcal{C} is the set of complex numbers.
 - (b) Let $f(x) = \sum_{i=0}^{n} a_i x^i \in \mathbb{R}[x]$ be a polynomial of odd degree where $a_n > 0$ and $a_0 \neq 0$. Show that f has a real zero α such that $\alpha a_0 < 0$.
 - (c) Let $f(x) = \sum_{i=0}^{n} a_i x^i \in \mathbb{R}[x]$ be a polynomial of even degree where $a_n > 0$ and $a_0 < 0$. Show that f(x) has two real zeros α , β with $\alpha > 0$ and $\beta < 0$.
 - (d) Show that 1 + i is a zero of $f(x) = x^4 4x^3 + 5x^2 2x 2$. Also find the other zeros of f(x).