

The Open University of Sri Lanka
B.Sc Degree Programme
Level 05 - Final Examination 2008/2009
Pure Mathematics
PMU 3292/PME 5292 - Group Theory and Transformation - Paper II

Duration: 2 1/2 Hours.

Date: 05-01-2009.

Time:- 1.00 p.m. - 3.30 p.m.

Answer FOUR questions only.

- 01.(a) Let H, K be subgroups of a group G of orders 3, 5 respectively. Prove that $H \cap K = \{1\}$
 - (b) Let $H_3 = 3\mathbb{Z}$ be the subgroup consisting of multiples of 3 in the group $(\mathbb{Z}, +)$. Find the right cosets of H_3 in \mathbb{Z} .
- 02. A subgroup K of a group G is said to be normal if for each $a \in G$, Ka = aK.
 - (i) Show that $A_3 = \{I, (1\ 2\ 3), (1\ 3\ 2)\}$ is a normal subgroup of S_3 , where S_3 is the symmetric group of order 6.
 - (ii) Show that even though $A_3(1\ 2) = (1\ 2)A_3$, it is not true that $\rho(1\ 2) = (1\ 2)\rho$ for each ρ in A_3 .
- 03. (a) For $a, b \in R$, $a \neq 0$, define $f: \mathbb{R} \to \mathbb{R}$ by $f_{ab}(x) = ax + b$. Let $G = \{f_{ab} \mid a, b \in \mathbb{R}, a \neq 0\}$ and $N = \{f_{1b} \in G\}$. Prove that N is a normal subgroup of G.
 - (b) Prove that the subgroup N of G is a normal subgroup of G if and only if gN = Ng, $\forall g \in G$.
- 04. Determine which of the following mapping $f: \not \mathbb{C}^* \mapsto \mathbb{R}^*$ are homomorphisms and which or not.

(i)
$$f(z) = |z|$$

(ii)
$$f(z) = 2|z|$$

(iii)
$$f(z) = \frac{1}{|z|}$$

$$(iv) f(z) = 1 + |z|$$

(v)
$$f(z) = |z|^2$$

(vi)
$$f(z) = 1$$
.

05. (a) $f: G \mapsto G$ is defined by

(i)
$$f(x) = x^2$$
 (ii) $f(x) = x^{-1}$

Decide which of the above mappings are homomorphisms. Justify your answer.

- (b) Let $W = \begin{pmatrix} x & -x \\ 0 & 0 \end{pmatrix}$: $x \in Q^*$ be a group under matrix multiplication. Prove that $(W,\times)\cong (\mathbb{Q}^*,\times)$
- 06. (a) Let G be a group such that G/Z(G) is cyclic. Show that G is abelian, where Z(G) is the centre of G.
 - (b) If \mathbb{R}^* is the group of non zero real numbers under multiplication, then prove that (\mathbb{R}^* , ·) is not isomorphic to $(\mathbb{R}, +)$.