THE OPEN UNIVERSITY OF SRI LANKA Foundation Programme in Science/Continuing Education Programme LEVEL 2- ASSIGNMENT TEST 1 (NBT) 2006/2007 PSF 2303/PSE 2303 – CHEMISTRY – LEVEL 2 **DURATION: 1 HOUR** DATE: 2006 - 12 - 18 (Monday) TIME: 3.00 p.m. TO 4.00 p.n Part A – Multiple choice Questions (marks $3 \times 15 = 45$ marks) Part B – Structured essay type Questions 55 marks ## Answer all the questions Choose the most correct answer to each question and mark a cross over the answer on the given answer sheet. Any answer with more than one cross will not be counted. Each correct answer will carry 3 marks. 0.5 marks will be deducted for each incorrect answer. Gas constant, (R) $=8.314 \text{ J K}^{-1} \text{ mol}^{-1}$ Avogadro constant, (L) $=6.023\times10^{23}$ mol⁻¹ $=6.63 \times 10^{-34} \text{ Js}$ Plank constant, (h) $=3 \times 10^8 \,\mathrm{ms}^{-1}$ Velocity of light, (c) Standard atmospheric pressure, $(\Pi) = 10^5 \text{ Pa}$ $Log_e(X)$ $= 2.303 \log_{10}(X)$ $= 1 \times 10^5 \,\mathrm{Nm}^{-2}$ 1 atm (4) SO₂ (5) NO₂ - 1. 300 ml of a gas at 27 °C is cooled to -3 °C at constant pressure. It s final volume is - (1) 135 ml (2) 405 ml (3) 33.33 ml (4) 270 ml (5) 276 ml (3) CO - 2. Which of the following gases would have highest root mean square velocity at 25 °C - (2) O_2 3. Sodium hydroxide does not react with (1) CO₂ - (1) Al (2) Zn (3) Cl₂ (4) Br₂ (5) Cu - 4. NaNO₃ decomposes above 800 ° c to give - (1) N_2 (2) O_2 (3) NO₂ Na₂O (5) NO - 5.Be2+ has a strong tendency to form covalent bonds in its compounds because of its - (1) High ionic potential (2) Low ionic potential (3) Low ionization energy (4) High ionization energy (5) None of the above - 6. The order of increasing thermal stabilities of - (a) K₂CO₃ (b) MgCO₃ (c) CaCO₃ (d) BeCO₃ - (1) d < b < c < a (2) a < b < c < d (3) d < b < a < c (4) b < d < c < a (5) d < c < b < a | 7. The polarity of B - X bonds is in the order B - F < B - Cl < B - Br but Lewis acidity shows the sequence | |--| | (1) $BCl_3 < BBr_3 < BF_3$ (2) $BF_3 < BCl_3 < BBr_3$ (3) $BBr_3 < BF_3 < BCl_3$ (4) $BCl_3 < BF_3 < BBr_3$ (5) $BF_3 < BBr_3 < BCl_3$ | | 8. LiH react with AlCl ₃ to give | | (1) Li Cl ₃ (2)AlH ₃ (3) LiAlH ₄ + LiCl (4) Li (5) Al H ₃ +Cl ₂ | | 9. $SiCl_4 + LiAlH_4 \longrightarrow A + AlCl_3 + LiCl$
A is | | (1) H_3SiH_4 (2) Si_2H_6 (3) Si_6H_{14} (4) Si_4H_{10} (5) None of the above | | 10. When N ₂ goes to N ₂ ⁺ the N-N bond distance | | (1) decreases (2) Remains the same (3) increases (4) Reduces to half (5) None of the above | | 11. 10 g sample of FeS was oxidized to SO ₂ by using 10.0 ml of 0.05 M K ₂ Cr ₂ O ₇ /H ⁺ Solution. Calculate the percentage of FeS in the sample is | | (1) 1.10% (2) 1.20% (3) 1.23% (4) 1.32% (5) 1.45% | | 12. HF can form HF ₂ while HCl cannot form HCl ₂ . This is due to, | | (1) Fluorine atom is small and can form H-bond (2) F₂ is more reactive (3) HF is more reactive (4) F₂ is highly electronegative (5) None of the above | | 13. Point out the false statement. Strong oxidizing character is favoured by | | (1) High electron affinity of the halogen atom (2) Low ionization energy of the halogen atom (3) High hydration energy of the gaseous halide ions (4) Low heat of dissociation of the molecular nitrogen (5) None of the above | | 14. High boiling point of water is due to | | (1) Its high specific heat (2) Low dissociation constant (3) Its dipole moment (4) Its molar mass (5) Inter molecular hydrogen bonding | | 15. The number of d electrons in Fe^{2+} (Z=26) is equal to that of the | | (1) p-electrons in Cl (Z=17) (2) d-electrons in Fe (3) p-electrons in Ne (Z=10) (4) p-electrons in S (Z=16) (5) s-electrons in Mg (Z=12) | | |