THE OPEN UNIVERSITY OF SRI LANKA

Foundation Programme in Science/Continuing Education Programme

LEVEL 2- ASSIGNMENT TEST II (NBT) 2006/2007

PSF 2303/PSE 2303 - CHEMISTRY

DURATION: 1 HOUR

DATE: 2007 - 01 - 17 (Wednesday)

TIME: 3.00 p.m. TO 4.00 p.m.

Part A – Multiple choice Questions (marks $3 \times 15 = 45$ marks

Answer all the questions

Choose the most correct answer to each question and mark a cross over the answer on the given answer sheet Any answer with more than one cross will not be counted. Each correct answer will carry 3 marks. 0.5 marks will be deducted for each incorrect answer.

=8.314 J K⁻¹ mol⁻¹ Gas constant, (R) $=6.023\times10^{23} \text{ mol}^{-1}$ $=6.63\times10^{-34} \text{ Js}$ Avogadro constant, (L) Plank constant, (h) $=3 \times 10^8 \, \text{ms}^{-1}$ Velocity of light, (c) Standard atmospheric pressure, $(\Pi) = 10^5 \text{ Pa}$ $= 2.303 \log_{10}(X)$ = 1× 10⁵ Nm⁻² $Log_{e}(X)$ 1 atm

- 1. Determine the concentration of [H_3O^+] in 0.1 mol dm⁻³ CH₃COOH solution $K_a = 1.69 \times 10^{-5}$ mol dm⁻³
 - (1) 1.3×10^{-5}

- (2) 1.3×10^{-4} (3) 1.3×10^{-3} (4) 1.3×10^{-2} (5) 1.3×10^{-6}
- 2. During electrolysis the number of moles of electrons needed to deposit one mole of Al at Cathode is
 - (1)5
- (2) 3
- (3) 1
- (4) 2
- (5) 4
- 3. Find the $[H^+]$ ion concentration in mol dm⁻³ of 0.02 dm³ of gastric juice containing 6.00×10^{-5} moles of Hydrogen ions
 - (1) 2.0×10^{-2}
- (2) 3.0×10^{-2} (3) 2.0×10^{-3} (4) 3.0×10^{-3}
- $(5) 6.0 \times 10^{-3}$
- 4. 20. 0 cm³ of 0.4 mol dm⁻³ NaOH solution completely neutralizes 40.0 cm³ of dibasic acid. The molarity of acid is, mol dm⁻³
 - (1) 0.1
- (2) 0.3
- (3) 0.5
- (4) 0.4
- (5) 0.2
- 5. 3.178 g of Barium Chloride were dissolved in distilled water and excess of H₂SO₄ acid were added. If the mass of Barium Sulphate is 3.019 g calculate the percentage of Barium in the Barium Chloride [Ba-137, S-32, O-16, Cl-35.5]
 - (1) 55.85 %
- (2) 31.78 %
- (3) 30.19 %
- (4) 90.18 %
- (5) 10.15 %
- 6. The solubility of Magnesium Hydroxide is 2.0×10^{-4} mol dm⁻³ Calculate the solubility product

- (1) 3.2×10^{-5} (2) 1.6×10^{-5} (3) 4×10^{-5} (4) 3.2×10^{-6} (5) 4.0×10^{-6}

7. mereasing order	or penetrating p	ower of	radioactive emission	n particles	
(1) α <γ<β	(2) $\alpha = \beta$	< γ	(3) $\alpha < \beta < \gamma$	(4) $\beta < \alpha < \gamma$	(5) $\gamma < \alpha < \beta$
8. Hydrocarbon A	contains 3g of c	arbon pe	er gram of Hydrogen	n its formula is	
(1) C_2H_6	(2) C_2H_4		(3) C_2H_2	(4) CH ₄	(5) C_3H_8
9. An organic comp [C-12,H-1,O-16]	ound the empiric Molecular form	cal form ula of th	ula CH ₂ O and relati ne compound is	ve molecular mass	-90
(1) CH ₂ O	(2) C ₂ H ₄ O	2	(3) $C_3H_5O_3$	(4) C ₄ H ₈ O ₄	$(5) C_3H_6C$
10. Number of Chai	n isomers of C ₆ H	I ₁₀ will l	pe	t	
(1) 4	(2) 5		(3) 6	(4) 7	(5) 8
11. Stereo isomers of CH ₃	f the compound CH—CH CH—C Br	H_3			
(1) 2	(2) 3	are	(3) 4	(4) 6	(5) 8
	above rsion can be don ——➤ CH₃CF	e by usi I ₂ CH ₂ CH	₂ CH ₃		C≡C-CH ₂ CH ₃ (5) H ⁺ /KMn(
14. Which Aldehyde	or ketone does i	ot unde	ergo aldolcondensat	ion reaction	
O (1) CH ₃ CH ₂ C-H	O (2) CH ₃ C CH ₃ (CH ₃ -	H O CH ₃ -C	$\begin{array}{ccc} \text{H} & \text{O} \\ \text{C-C} & & \\ \text{CH}_3 & & \\ \end{array} $	СН ₃ О Н ₃ -С-С-Н СН ₃
15.IUPAC name of CH ₃ -CH ₂ -CH-	ОН	ound is	•		
CH ₃ (1) 3-Methyl-1-pe (5) 1-Hexanol	entanol (2) 3-Me	ethyl-2-p	pentanol (3) 3-Hexa	nol (4) 1,3-Dimeth	nyl-1-butanol
				•	
40					