THE OPEN UNIVERSITY OF SRI LANKA Foundation Programme in Science/Continuing Education Programme LEVEL 2- ASSIGNMENT TEST II (NBT) 2006/2007 PSF 2303/PSE 2303 - CHEMISTRY **DURATION: 1 HOUR** DATE: 2007 - 01 - 17 (Wednesday) TIME: 3.00 p.m. TO 4.00 p.m. ## Part A – Multiple choice Questions (marks $3 \times 15 = 45$ marks ## Answer all the questions Choose the most correct answer to each question and mark a cross over the answer on the given answer sheet Any answer with more than one cross will not be counted. Each correct answer will carry 3 marks. 0.5 marks will be deducted for each incorrect answer. =8.314 J K⁻¹ mol⁻¹ Gas constant, (R) $=6.023\times10^{23} \text{ mol}^{-1}$ $=6.63\times10^{-34} \text{ Js}$ Avogadro constant, (L) Plank constant, (h) $=3 \times 10^8 \, \text{ms}^{-1}$ Velocity of light, (c) Standard atmospheric pressure, $(\Pi) = 10^5 \text{ Pa}$ $= 2.303 \log_{10}(X)$ = 1× 10⁵ Nm⁻² $Log_{e}(X)$ 1 atm - 1. Determine the concentration of [H_3O^+] in 0.1 mol dm⁻³ CH₃COOH solution $K_a = 1.69 \times 10^{-5}$ mol dm⁻³ - (1) 1.3×10^{-5} - (2) 1.3×10^{-4} (3) 1.3×10^{-3} (4) 1.3×10^{-2} (5) 1.3×10^{-6} - 2. During electrolysis the number of moles of electrons needed to deposit one mole of Al at Cathode is - (1)5 - (2) 3 - (3) 1 - (4) 2 - (5) 4 - 3. Find the $[H^+]$ ion concentration in mol dm⁻³ of 0.02 dm³ of gastric juice containing 6.00×10^{-5} moles of Hydrogen ions - (1) 2.0×10^{-2} - (2) 3.0×10^{-2} (3) 2.0×10^{-3} (4) 3.0×10^{-3} - $(5) 6.0 \times 10^{-3}$ - 4. 20. 0 cm³ of 0.4 mol dm⁻³ NaOH solution completely neutralizes 40.0 cm³ of dibasic acid. The molarity of acid is, mol dm⁻³ - (1) 0.1 - (2) 0.3 - (3) 0.5 - (4) 0.4 - (5) 0.2 - 5. 3.178 g of Barium Chloride were dissolved in distilled water and excess of H₂SO₄ acid were added. If the mass of Barium Sulphate is 3.019 g calculate the percentage of Barium in the Barium Chloride [Ba-137, S-32, O-16, Cl-35.5] - (1) 55.85 % - (2) 31.78 % - (3) 30.19 % - (4) 90.18 % - (5) 10.15 % - 6. The solubility of Magnesium Hydroxide is 2.0×10^{-4} mol dm⁻³ Calculate the solubility product - (1) 3.2×10^{-5} (2) 1.6×10^{-5} (3) 4×10^{-5} (4) 3.2×10^{-6} (5) 4.0×10^{-6} | 7. mereasing order | or penetrating p | ower of | radioactive emission | n particles | | |--|--|---|--|---|---| | (1) α <γ<β | (2) $\alpha = \beta$ | < γ | (3) $\alpha < \beta < \gamma$ | (4) $\beta < \alpha < \gamma$ | (5) $\gamma < \alpha < \beta$ | | 8. Hydrocarbon A | contains 3g of c | arbon pe | er gram of Hydrogen | n its formula is | | | (1) C_2H_6 | (2) C_2H_4 | | (3) C_2H_2 | (4) CH ₄ | (5) C_3H_8 | | 9. An organic comp
[C-12,H-1,O-16] | ound the empiric
Molecular form | cal form
ula of th | ula CH ₂ O and relati
ne compound is | ve molecular mass | -90 | | (1) CH ₂ O | (2) C ₂ H ₄ O | 2 | (3) $C_3H_5O_3$ | (4) C ₄ H ₈ O ₄ | $(5) C_3H_6C$ | | 10. Number of Chai | n isomers of C ₆ H | I ₁₀ will l | pe | t | | | (1) 4 | (2) 5 | | (3) 6 | (4) 7 | (5) 8 | | 11. Stereo isomers of CH ₃ | f the compound CH—CH CH—C Br | H_3 | | | | | (1) 2 | (2) 3 | are | (3) 4 | (4) 6 | (5) 8 | | | above rsion can be don ——➤ CH₃CF | e by usi
I ₂ CH ₂ CH | ₂ CH ₃ | | C≡C-CH ₂ CH ₃ (5) H ⁺ /KMn(| | 14. Which Aldehyde | or ketone does i | ot unde | ergo aldolcondensat | ion reaction | | | O
(1) CH ₃ CH ₂ C-H | O
(2) CH ₃ C CH ₃ (| CH ₃ - | H O CH ₃ -C | $\begin{array}{ccc} \text{H} & \text{O} \\ \text{C-C} & & \\ \text{CH}_3 & & \\ \end{array} $ | СН ₃ О
Н ₃ -С-С-Н
СН ₃ | | 15.IUPAC name of CH ₃ -CH ₂ -CH- | ОН | ound is | • | | | | CH ₃ (1) 3-Methyl-1-pe (5) 1-Hexanol | entanol (2) 3-Me | ethyl-2-p | pentanol (3) 3-Hexa | nol (4) 1,3-Dimeth | nyl-1-butanol | | | | | | • | | | 40 | | | | | |