The Open University of Sri Lanka
B.Sc. Degree Programme – Level 04
Final Examination 2006/2007
Pure Mathematics
PMU 2194/PME 4194 – Number Theory & Polynomials

Duration: Two and Half (2 1/2) Hours.

Date :- 22-06-2007.

Time:- 10.00 a.m. - 12.30 p.m.

Answer Four Questions Only.

- 01. Let $\mathbb N$ be the set of natural numbers. Then prove the followings.
 - (a) If S is an inductive set and $S \subseteq \mathbb{N}$ then $S = \mathbb{N}$.
 - (b) If $n \in \mathbb{N}$ then $n \ge 1$.
 - (c) If $n \in \mathbb{N}$ and n > 1, then $n 1 \in \mathbb{N}$.
 - (d) If $n \in \mathbb{N}$ there is no $m \in \mathbb{N}$ s. t. n < m < n + 1.
 - (e) If T is a non-empty subset of \mathbb{N} , then T has a least element.
 - (Hint: (i) There is no natural number n such that 0 < n < 1.
 - (ii) If $m, n \in \mathbb{N}$ and m > n then $m n \in \mathbb{N}$.
 - (iii) If $m, n \in \mathbb{N}$ and m < n then $m + 1 \le n$.)
- 02. (a) Let $n_0 \in \mathbb{N}$ and for each natural number $n \ge n_0$, a proposition p(n) satisfies the following conditions:
 - (i) $p(n_0)$ is true.
 - (ii) $n \ge n_0$ and p(n) is true $\Rightarrow p(n+1)$ is true. Prove that p(n) is true for all $n \ge n_0$.
 - (b) If $b \in \mathbb{Z}$ and $B = \{z \in \mathbb{Z}: z \ge b\}$ then prove that B is a well ordered set.
 - (c) Find the greatest common divisor of 1023 and 453, and express it in the form 1023m + 453n where $m, n \in \mathbb{Z}$.
 - (d) Find the least common multiple of 1023 and 453.
- 03. (a) Prove that every positive integer n > 1 can be expressed uniquely as a product of prime numbers except for the order in which the prime factors occur.
 - (b) If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$ then prove that
 - (i) $a+c \equiv b+d \pmod{m}$
 - (ii) $a-c \equiv b d \pmod{m}$
 - (iii) $a c \equiv b d \pmod{m}$.

04.(a) Define the greatest common divisor of two polynomials f(x) and g(x).

(b) Let F be a field and f(x), $g(x) \in F[x] \setminus \{0\}$.

If $d = (f, g) \in F[x]$ is the greatest common divisor of f and g then show that d can be expressed in the form d = fu + gv with u(x), $v(x) \in F[x]$ and d(x) is unique. (State clearly any result that you use).

- (c) Find the greatest common divisor d of $f = x^{27} 1$, $g = x^{15} 1$ ln $Z_3[x]$ and express it in the form d = fu + gv with $u, v \in Z_3[x]$.
- 05.(a) Define an irreducible polynomial.
 - (b) Let F be a field. Show that F[x] has infinite number of irreducible polynomials.
 - (c) Show that a quadratic or cubic polynomial f(x) in F[x] is irreducible if $f(\alpha) \neq 0$ for all $\alpha \in F$.
 - (d) Give a counter example to show that the above result is not true if $\deg f(x) > 3$.
- 06.(a) Let $f(x) = \sum_{i=0}^{n} a_i x^i \in \mathbb{Z}[x]$ and $\alpha_1, ..., \alpha_n$ are the zeros of f in f, where f denotes the set of complex numbers. Let s_r be the sum of the products of the α_i 's taken r at a time $1 \le r \le n$. Show that $s_r = (-1)^r \frac{a_{n-r}}{a_n}$.

If α_1 , α_2 and α_3 are the zeros of $f(x) = 3x^3 - x + 1$, determine a polynomial g(x) whose roots are $\frac{1}{\alpha_1^2}$, $\frac{1}{\alpha_2^2}$ and $\frac{1}{\alpha_3^2}$.

(b) Let. $f = \sum_{i=0}^{n} a_i x^i \in \mathbb{Z}[x]$ and $n \ge 1$.

If $\alpha \in \mathbb{Q}$ is a zero of f(x) and $\alpha = \frac{r}{s}$ with (r, s) = 1, then show that $r \mid a_0$ and $s \mid a_n$.

Find the roots, if any in \mathbb{Q} of $f(x) = 2x^4 + 7x^3 + 3x^2 + 12 = 0$.

---- Copyrights reserved ----