

The Open University of Sri Lanka

Faculty of Engineering Technology

Industrial Studies (Agriculture) & Technology (Agricultural Engineering)

Program of Study

Final Examination – 2014/2015

AEX3232/AEX4240 Plant & Soil Science

2.30 p.m.

Date	: 05/09/2015		
Time	: 09.30 a.m. – 1		

Duration

: Three (03) hours

Registration	number:		

Section 02 – Answer any four (04) out of the six (06) questions. You may use answer books and/or sheets to answer this section.

- 1) Define the term "Rock Weathering" and explain how water and temperature cause physical weathering of rocks.
- 2) What is "Humification"? Explain how humification affects chemical properties of soil.
- 3) a) Define the terms "Saline Soil" and "Sodic Soil".
 - b) Discuss the practices used to control soil salinity.
- 4) a) A low-fertile field with an area of 1 ha requires following nutrients for soy bean cultivation: N-73 kg, P₂O₅-56 kg, K₂O-62 kg, and S-60 kg. Calculate how much urea, triple super phosphate (TSP), muriate of potash (MOP), and CaSO₄ a farmer should add in order to fulfil the nutrient requirements for soybean. (Contents of N, P₂O₅, K₂O, and S in urea, TSP, MOP, and CaSO₄ are 46%, 45%, 60%, and 17%, respectively.)
 - b) If the farmer decides to replace CaSO₄ with (NH₄)₂SO₄, calculate the following:
 - the amount of (NH₄)₂SO₄ he should add to fulfil the S requirement
 - the amount of urea he should add to fulfill the N requirement {Note that (NH₄)₂SO₄ has 21% N and 24% S}
 - c) Briefly state the constraints associated with the application of (NH₄)₂SO₄ on to soil.
- 5) Discuss the different phases of organic matter decomposition.
- 6) The C:N ratios of clover and straw residues are 12:1 and 80:1, respectively. Which crop residue is best suited as an organic matter for a N-deficient soil? Justify your answer.