

The Open University of Sri Lanka

Faculty of Engineering Technology
Industrial Studies (Agriculture) Programme
Final Examination – 2014/ 2015
AEZ3238 Mathematics for Agriculture

Date

: 08-08-2015

Time

: 9.30-12.30

Duration

: Three (03) hours

Read the instruction given below before starting to answer the question paper

- 1. This question paper has eight (08) questions. Answer any six (06) questions.
- 2. All questions carry equal marks.
- 3. Answers to questions shall be legible, clear, and neat and step by step procedure is important in all calculations. Final answers should be underlined.
- 4. Start answering each question from a fresh page with the relevant question number written at the top of the page.
- 5. It is important that the candidate writes the question numbers of the attempted questions on the cover page.
- 6. Do not use red ink or pencils to write your answers.
- 7. Write your Index Number clearly on the answer book.
- 8. Delete by drawing a line on the page/s in the answer book, where you have material which do not require the attention of the examiner.

- a) Convert each of the following angle to degree. The value of the angle should be rounded off to the nearest first decimal place and positive value.
 - i) 1 rad

- ii) $\frac{3\pi}{2}$
- iii) $-\frac{\pi}{2}$
- b) Convert each of the following angle to radian:
 - i) 120⁰
- ii) 520⁰
- iii) -270°
- c) Let $\sec \theta = \frac{m^2 1}{2m}$. Find the values of the following trigonometric functions in terms of m:
 - i) $\cos \theta$
 - ii) $\sin \theta$
 - iii) $\tan \theta$

Question 2

- i) Prove the following trigonometric relationships
- ii) $\cot \theta \sin \theta \sec \theta = 1$
- iii) $(1-\cos^2\theta)(1+\tan^2\theta) = \tan^2\theta$
- iv) $\frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta} = \csc \theta \sec \theta$
- v) $\frac{\tan \theta}{\sec \theta 1} + \frac{\tan \theta}{\sec \theta + 1} = 2\csc \theta$
- a) A ship leaves port Aat 12.00 noon and sails due west (W) at 20 nautical miles per hour. At 2.00 pm the ship is at B and changes its course (path) to N 60° W, as shown in the Figure1 and sails at the same speed towards port C. Find the ship's bearing and distance from the port Awhen the ship is at port C at 3.00 pm.

 [In usual notations, any triangle with sidesa, b and cwith opposite angles BAC, CBA and BCAsatisfies the following trigonometric relationships.]

Figure 1

a) Factorize the following expressions:

i)
$$3xy^2 + 12x^2y$$

ii)
$$x^2 + 80x - 81$$

iii)
$$n^3 - 4n$$

iv)
$$2x^2 + xy - y^2$$

b) Solve the following equations:

i.
$$\frac{x-1}{2} = \frac{2x+5}{3}$$

ii.
$$x^2 - 7x + 1 = 0$$

iii.
$$2x^3 - 16 = 0$$

c) Solve the following system of equations:

$$x + y = 3$$

$$2x + y - z = 5$$

$$x + 2y + 2z = 3$$

Question 4

- a) It is given that the equation $x^2 + (k-3)x + k = 0$ has real roots. Find the range of the value of k.
- b) In the above equation if the value of k = +4, and the roots are given by α and β , find the values of the following:

i)
$$\alpha\beta$$
 ii) $(\alpha + \beta)$ iii) $(\alpha^2 + \beta^2)$ iv $(\alpha - \beta)$ v) $(\frac{1}{\alpha^2 + \beta^2})$

c) Prove that the equation $cx^2 + (c-1)x + 1 - 2c = 0$ has real roots for real values of c

a) Evaluate the limits of the following functions:

i)
$$\lim_{x\to 1} \frac{x^2 + 3x - 4}{x - 1}$$

ii)
$$\lim_{x\to 0} \frac{(x+3)^2-9}{x}$$

$$\lim_{x\to 1} \frac{x^2 + 3x - 4}{x - 1}$$
; ii) $\lim_{x\to 0} \frac{(x + 3)^2 - 9}{x}$ iii) $\lim_{x\to \infty} \frac{x^2 + 1}{2x^2 + x - 1}$.

b) Differentiate following functions with respect to the relevant variable.

i)
$$\frac{2}{x^4}$$

ii)
$$10 x^{12}$$

iii)
$$x^2 + \frac{1}{x} + \sqrt{x}$$

iv)
$$(t^2 + t + 1) \left(\frac{1}{t} + \sqrt{t} \right)$$

$$v) \qquad \frac{t^2 + 2t + 1}{t - 1}$$

c) Given that $y = x^6 + 4x^4 + x + 3$. Determine the first and second derivatives of y.

Question 6

- a) Let $y = A\cos\omega\theta + B\sin\omega\theta$ where A, B and ω are constants. Show that $\frac{d^2y}{d\theta^2} = -\omega^2\theta$.
- b) Suppose that the function $f(x) = \frac{2x}{1+x^2}$ has two minimum turning points and one maximum turning point.
 - i) What are the coordinates of these turning points?
 - ii) Check for maxima and minima and identify the nature of the turning points.

- a) Find the indefinite integral of the following functions.
 - i) $\int (x+2)^2 dx$
 - ii) $\int \left(3x^2 \frac{1}{x^2} + \frac{1}{x} + \frac{1}{6\sqrt{x}}\right) dx$
 - iii) $\int x \sin x \ dx$
- b) Find the following finite integrals.
 - $i) \qquad \int_0^1 (x^3 + x + 1) dx$
 - ii) $\int_1^2 \frac{(t+1)}{t^2} dt$
 - iii) $\int_1^2 2sin2\theta d\theta$

The Figure 2(a) below shows the cross section of a reservoir which stores water for irrigation purposes. Figure (b) is a three dimensional sketch of the whole tank. The cross section, which is symmetrical about O-Y axis, is uniform over the tank length. The tank is 20m long and 8 m wide. The profile of the tank wall with respect to x-y coordinate system with origin at O is given by the equation, $x^2 = 8y$. The maximum height of the tank is 4m as shown in the Figure 2(b). It is required to estimate the volume of the water that the tank can hold.

- i. Calculate the cross sectional area of the tank in square meters.[Hint: Use definite integration and integrate with respect to variable y.]
- ii. Hence find the water holding capacity of the tank in cubic meters.

