The Open University of Sri Lanka
B.Sc./B.Ed. Degree Continuing Education Programme
Final Examination-2008/2009
PMU 2192/ PME 4192- Linear Algebra
Pure Mathematics

Date: 08-01-2009.

Time: 09.30 a.m. - 12.00 noon

Answer FOUR questions only.

- (1) (i) Define each of the following:
 - (a) a spanning set,
 - (b) a subspace,
 - (c) a basis.
 - (ii) Give an example for a spanning set which is not a basis.
 - (iii) Let $W = \{(a, b, c, d) | a + b = 0, c = 2d\}$. Show that W is a subspace of \mathbb{R}^4 . Find a basis for W and the dimension of W.
- (2) (i) Let S be any finite subset of the vector space \mathbb{R}^3 . Prove that the span of S is a subspace of \mathbb{R}^3 .
 - (ii) Determine whether each of the following sets of vectors is linearly independent or dependent:
 - (a) $\{(1, 1, 2), (1, 2, 5), (5, 3, 4)\}$ in \mathbb{R}^3 .
 - (b) $\{(1, 2, -1, 1), (-3, 1, 2, -1), (-3, 8, 1, 1)\}$ in \mathbb{R}^4 .
 - (c) $\{(1, 1, 1), (0, 1, 1), (0, 0, 1)\}$ in \mathbb{R}^3 .
 - (iii) Which of the following are linear transformations? Justify your answer.
 - (a) $T: \mathbb{R}^2 \to \mathbb{R}^3$

$$T(x, y) = (x + 2y, x - y, y)$$

(b)
$$T: \mathbb{R}^3 \to \mathbb{R}^3$$

 $T(x, y, z) = [x + y, y, (x + z)^2]$

(c)
$$T: \mathbb{R}^2 \rightarrow \mathbb{R}^2$$

 $T(x, y) = (2x + 5y, 0)$

- (3) (i) Define an inner product space.
 - (ii) Find $\begin{pmatrix} a \\ b \\ c \end{pmatrix}$ if the set $\left\{ \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1/\sqrt{2} \\ 0 \\ 1/\sqrt{2} \end{pmatrix}, \begin{pmatrix} a \\ b \\ c \end{pmatrix} \right\}$ is an orthonormal set in \mathbb{R}^3 .
 - (iii) $\{1, x, x^2, x^3\}$ is a linearly independent set of continuous functions on the interval [-1, 1]. Find the corresponding othonormal set starting from the given set.
- (4) (i) Find the rank of the matrix $\begin{pmatrix}
 0 & c & -b & a' \\
 -c & 0 & a & b' \\
 b & -a & 0 & c' \\
 -a' & -b' & -c' & 0
 \end{pmatrix}$ where a, b and c are positive and aa' + bb' + cc' = 0.

(ii) Let
$$A = \begin{pmatrix} 1 & -2 & 3 \\ 2 & -3 & 4 \\ 4 & 2 & 1 \end{pmatrix}$$
. Find the inverse of A .

(iii) Let
$$A = \begin{pmatrix} 4 & 2 & 1 & 3 \\ 6 & 3 & 4 & 7 \\ 2 & 1 & 0 & 1 \end{pmatrix}$$
. Find non-singular matrices P and Q such that

PAQ is of the normal form.

Hence determine the rank of A.

- (5) (i) If A is a square matrix of order n and rank (n-1), show that Adj A is not equal to the null matrix.
 - (ii) Show that if two matrices A and B have the same order and same rank, then there exist non-singular matrices R and S such that B = RAS.
 - (iii) Solve the following homogeneous linear equations in x, y, z, t given that a, b, c are all distinct.

$$(b-a)y + (c-a)z + (b+c)t = 0$$

$$(a-b)x + (c-b)z + (c+a)t = 0$$

$$(a-c)x + (b-c)y + (a+b)t = 0$$

$$(b+c)x + (c+a)y + (a+b)z = 0.$$

- (6) (i) If k is a non-zero scalar, prove that the characteristic roots of kA are k times the characteristic roots of A.
 - (ii) Let $A = \begin{pmatrix} 3 & 1 \\ 1 & 2 \end{pmatrix}$. Using the Cayley Hamilton Theorem, express $(5A^5 3A^4 + A^2 5I)$ in the form $\alpha A + \beta I$, where α and β are to be determined.
 - (iii) Let $A = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$. Find an orthogonal matrix P such that

P'AP is a diagonal matrix, where P' is the transpose of P.