

THE OPEN UNIVERSITY OF SRI LANKA B. Sc. & B. Ed. DEGREE/STAND ALONE COURSES IN SCIENCE 2008/2009 - Level 5 ASSIGNMENT TEST I (NBT) CHU3127/CHE5127 - Organometallic Chemistry

DURATION: 1.5 hours

DATE: 9th September 2008

TIME: 3.30 p.m. to 5.00 p.m.

ANSWER ALL QUESTIONS

Select the most correct answer to each question given below. Mark a cross (X) over the most suitable answer on the given answer script. Any answer with more than one cross will not be counted and 1/5th of the mark will be deducted for each incorrect answer.

PART A (60 marks)

on mode(s) of cyclobutene (C ₄ H ₆) is/are?			
2) η^2 only.			
2) η^2 only. 4) η^2 and η^4 only.			
organic ligands,			
π -allyl (iii) =CH ₂			
o ligands are			
2) (i) and (iii) only.			
4) (i), (ii) and (iii).			

- 3. The IUPAC name of [NiCl(η^2 -C₂H₄)(η^3 -C₃H₅)] is
 - 1) Nickel chloroethyleneallyl
 - Chloro(η²-ethene)(η³-allyl)nickel
 - 3) Trihaptoallylchlorodihaptoethenenickel
 - 4) (η³-Allyl)chloro(η²-ethene)nickelate
- 4. The strongest σ-donor ligand among the following ligands is 1) PEt₃ 2) PCl₃ 3) PPh₃
- 5. According to ionic model, which one of the following is **not** a 4e-donor ligand? 1) η^3 -C₃H₅ 2) η^5 -Cp 3) η^4 -cyclobutadiene (C₄H₄)
- 6. What is the Valence Electron Count (VEC) of Ni in [NiCl(η^2 -C₂H₄)(η^3 -C₃H₅)]? (Atomic number of Ni is 28) 1) 14 2) 16 3) 18 4) 33
- 7. An L₂X type ligand is
 - 1) η^3 -C₃H₃⁻ 2) cyclopentadiene (C₅H₆)
- 3) η⁴-C₄H₄

8	. The coordi 1) 3	nation numb 2) 4	oer of Ni in 3) 5	[NiCl(η*-C ₂ 4) 6	H ₄)(η"-C ₃ I	1 ₅)] 1S		· ,
9	(i) Ca (ii) In (iii) Ca The c 1) (i)	ne following surbene ligand Schrock carbarbene ligand correct staten & (ii) only.	is a monoha eenes, the car is a 2e-dono nents are	pto ligand. bene carboner. 2) (i) & (i)	is nucleo			
	3) (ii)) & (iii) only.		4) (i), (ii)	& (111).	11.31	1	
1	nickel in	g to the ionic [NiCl(η³-C ₃ F d¹0, +1 d ⁸ , +2	$I_5)(PPh_3)$] (a	tomic numb	configura er of Ni is	tion and the 28) are	oxidation 1	number of
. 1	(i)] (ii)] (iii)] The corr e	the following It shows the s It gives geom It is a coordir ect statement & (ii) only.	quare-plana etrical isome natively unsa s are	r geometry. ers.	pound.	[PPh ₃)] (Gro	oup number	of Pd is 10)
) & (iii) only		4) (i), (ii)				
:		ne of the follo HC≡CH	owing ligand 2) C≡O	s is not isoe 3) NO	lectronic 4) NO	with CN	•	
	(i) ((ii) ((iii) The	the following CO stabilises CO is a good The back boncorrect state i) only.	metal centre π-acceptor l ading increas ment/s is/are	es in higher or igand. es the M–C	O bond str			
	1) It is a 2) It is a 3) It is a	not true abou good σ-dono 2e donor. better π-acce bilises the me	er. eptor than PF	r3. 1 higher oxid	dation state	2S.		
	15. Which o 1)	ne of the foll Hetero-atoms	owing staten are attached	nents is not I to the carb	true about ene carbot	Fischer ca 1.	irbenes?	

2) Carbene carbon contains a -δ charge.
3) Carbene carbon is readily attacked by nucleophiles.

4) Metal is in a low oxidation state.

	(i) only. (ii) & (iii) only.		& (ii) only. (ii) & (iii) only			
	back donation in m		(11) 01 (111) 0111)	· • .		
1)			.aad			
2)			iscu,			
,						
3) 4\	the M-CO bond lea	ngin is decrease	a.			•
4)	the o-character of	the M-CO bon	d is increased.			
19. Accord [CoCl(1)	ding to the Ionic Moo $(\eta^1-C_3H_5)(\eta^2-C_2H_4)(\eta^2-C_2H_4)$	del, what is the ⁵ -C ₅ H ₅)] (atom: 3) 3	oxidation numic number of Co	ber of Co io is 27) ?	n	
20. [(5.0)	II.) G (60) 1:	•				
1) 2)	₅ H ₅) ₄ Cr ₂ (μ-CO) ₂] is a nents is true about the Each chromium cer This is not a symme There is a no Cr–C ₁	e above comple atre has 16 vale etrical molecule	x? (Group num) nce electrons.	nplex. Which	ch one of the f	following
4)			Iging carbonyl	ligands.		
				J		
				•		
				•	•	
		•				
	•					
		•				

16. What is not true about the dinitrogen ligand?

(i) Isocyanides (RN \equiv C) are stronger π -acceptors than CO.

(ii) CO is a stronger π -acceptor than PMe₃. (iii) PF₃ is stronger π -acceptor than PMe₃.

1) It is isolectronic with CN-. 2) It can act as a terminal ligand 3) It can act as a bridging ligand 4) It cannot act as a dihapto ligand

17. Consider the following statements,

The correct statement/s is/are

THE OPEN UNIVERSITY OF SRI LANKA B.Sc. DEGREE PROGRAMME 2008/2009 CHU3127/CHE5127 – ORGANOMETALLIC CHEMISTRY- LEVEL 5 ASSIGNMENT TEST I - MCQ TEST

MCQ ANSWER SHEET: Mark a cross (X) over the most suitable answer.

g.No/Index No.					JERSI'
					LIBY LIBY
					Wales &
Marks					
Part A		•	FOR EX		R'S USE
			Unanswe		
Part B			Correct A		
Total %			Wrong A	nswers	
			Total		
			l		
1. 1 2 3 4	2.	1 2	3 4	3.	1 2 3 4
4. 1 2 3 4	5.	1 2	3 4	6.	1 2 3 4
7. 1 2 3 4	8.	1 2	3 4	9.	1 2 3 4
10. 1 2 3 4	11.	1 2	3 4	12.	1 2 3 4
13. 1 2 3 4] 14.	1 2	3 4	15.	1 2 3 4
16. 1 2 3 4	17.	1 2	3 4	18.	1 2 3 4
19. 1 2 3 4	20.	1 2	3 4		

Part B (40 marks)

Answer all the questions in the space provided. Attached sheets will not be graded.

1. (a) Give IUPAC names for the following complexes.

i. [CoCl(η^{1} -C₃H₅)(η^{2} -C₄H₄)(η^{2} -C₂H₄)]

ii. [FeBr₂(η^5 -C₅H₅)(PPh₃)(CO)]

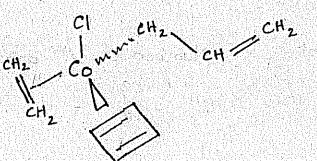
(b) Draw the structures of the following complexes.

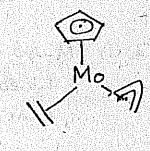
i. $[CoCl(\eta^1-C_3H_5)(\eta^2-C_4H_4)(\eta^2-C_2H_4)]$

ii. $(\eta^3$ -Allyl) $(\eta^5$ -cyclopentadienyl) $(\eta^2$ -ethene)molybdenum

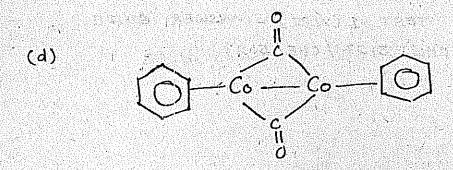
- (c) (i) Determine the VEC of cobalt in $[CoCl(\eta^3-C_3H_5)(\eta^2-C_2H_4)]$ using ionic model. (Indicate your break down; Group number of Co is 9)
 - (ii) Determine the VEC of iron in [FeBr(η⁵-C₅H₅)(PPh₃)(CO)] using covalent model.
 (Indicate your break down; Group number of Fe is 8)
- (d) Draw the structure of the following coordinatively saturated complex $[(\eta^6-C_6H_6)_2Co_2(\mu-CO)_2]$.

2.	(a) Determine the coordination number of Mn in [(η ⁵ -C ₅ H ₅)Mn(CO) ₃].
	(b) What is meant by "α-agostic interaction"? Draw the structure of [TiCl(=CH ₂)(η ⁵ -C ₅ H ₅) ₂], indicating the α-agostic interaction.
	(c) Arrange NO ⁺ , CN ⁻ and CO in the order of increasing π-acceptability.
	(d) (i) Give the relationship between the shape of the M-NO fragment and the number of electrons donated by the NO ligand.
	(ii) Deduce the coordination geometry of the Mn-NO fragment in the 18e-complex [Mn(NO)(CO) ₄ (PPh ₃)].
	(e) Draw and identify the two geometrical isomers of [FeBr ₃ (PPh ₃) ₃].


ASSIGNMENT TEST 1(NBT) - ANSWER GUIDE CHU 3127 / CHE 5127


PART (A)

$$_{13.}$$
 $_{(3)}$ $_{14.}$ $_{(3)}$ $_{15.}$ $_{(2)}$ $_{16.}$ $_{(4)}$ $_{17.}$ $_{(3)}$ $_{18.}$ $_{(3)}$


PART (B)

-) (a) (i) (η'-allyl) chloro (η'-cyclobutadiene) (η'-ethene) cobalt
 - (ii) dibromocarbonyl (75-cyclopentadienyl) triphenyl phosphineiron

(ii)

(2) (a) Mn^{2t} receives 12 electrons or 6 electron pairs the ligands; therefore the coordination number = 6

A Transport of the Control of the Co

(b) Weak Interaction between a metal centre and a bonding electron pair of a C-H bond of an « - carbo

- (4) CN < CC < NO+
- Linear Bent

(d)(i) M—NO fragment Number of e^{nsy} donated by NO 1è

- (ii) If x = no, of electrons donated by NO Mn = 7e NO _ XE 4x CO = 8e PPh3 = 2e =4 X = 1 = 1 bent

mer-isomer