THE OPEN UNIVERSITY OF SRI LANKA B. Sc. & B. Ed. DEGREE/STAND ALONE COURSES IN SCIENCE 2008/2009 - Level 5 ASSIGNMENT TEST I (NBT) CHU3127/CHE5127 - Organometallic Chemistry **DURATION: 1.5 hours** DATE: 9th September 2008 TIME: 3.30 p.m. to 5.00 p.m. #### ANSWER ALL QUESTIONS Select the most correct answer to each question given below. Mark a cross (X) over the most suitable answer on the given answer script. Any answer with more than one cross will not be counted and 1/5th of the mark will be deducted for each incorrect answer. ### PART A (60 marks) | on mode(s) of cyclobutene (C ₄ H ₆) is/are? | | | | |--|--|--|--| | 2) η^2 only. | | | | | 2) η^2 only.
4) η^2 and η^4 only. | | | | | organic ligands, | | | | | π -allyl (iii) =CH ₂ | | | | | o ligands are | | | | | 2) (i) and (iii) only. | | | | | 4) (i), (ii) and (iii). | | | | | | | | | - 3. The IUPAC name of [NiCl(η^2 -C₂H₄)(η^3 -C₃H₅)] is - 1) Nickel chloroethyleneallyl - Chloro(η²-ethene)(η³-allyl)nickel - 3) Trihaptoallylchlorodihaptoethenenickel - 4) (η³-Allyl)chloro(η²-ethene)nickelate - 4. The strongest σ-donor ligand among the following ligands is 1) PEt₃ 2) PCl₃ 3) PPh₃ - 5. According to ionic model, which one of the following is **not** a 4e-donor ligand? 1) η^3 -C₃H₅ 2) η^5 -Cp 3) η^4 -cyclobutadiene (C₄H₄) - 6. What is the Valence Electron Count (VEC) of Ni in [NiCl(η^2 -C₂H₄)(η^3 -C₃H₅)]? (Atomic number of Ni is 28) 1) 14 2) 16 3) 18 4) 33 - 7. An L₂X type ligand is - 1) η^3 -C₃H₃⁻ 2) cyclopentadiene (C₅H₆) - 3) η⁴-C₄H₄ | 8 | . The coordi
1) 3 | nation numb
2) 4 | oer of Ni in
3) 5 | [NiCl(η*-C ₂
4) 6 | H ₄)(η"-C ₃ I | 1 ₅)] 1S | | · , | |-----|--|--|--|---|--------------------------------------|---------------------------|-------------|--------------| | 9 | (i) Ca
(ii) In
(iii) Ca
The c
1) (i) | ne following surbene ligand
Schrock carbarbene ligand
correct staten
& (ii) only. | is a monoha
eenes, the car
is a 2e-dono
nents are | pto ligand. bene carboner. 2) (i) & (i) | is nucleo | | | | | | 3) (ii) |) & (iii) only. | | 4) (i), (ii) | & (111). | 11.31 | 1 | | | 1 | nickel in | g to the ionic
[NiCl(η³-C ₃ F
d¹0, +1
d ⁸ , +2 | $I_5)(PPh_3)$] (a | tomic numb | configura
er of Ni is | tion and the
28) are | oxidation 1 | number of | | . 1 | (i)]
(ii)]
(iii)]
The corr e | the following It shows the s It gives geom It is a coordir ect statement & (ii) only. | quare-plana
etrical isome
natively unsa
s are | r geometry.
ers. | pound. | [PPh ₃)] (Gro | oup number | of Pd is 10) | | | |) & (iii) only | | 4) (i), (ii) | | | | | | : | | ne of the follo
HC≡CH | owing ligand
2) C≡O | s is not isoe
3) NO | lectronic
4) NO | with CN | • | | | | (i) (
(ii) (
(iii)
The | the following CO stabilises CO is a good The back boncorrect state i) only. | metal centre
π-acceptor l
ading increas
ment/s is/are | es in higher or igand. es the M–C | O bond str | | | | | | 1) It is a
2) It is a
3) It is a | not true abou
good σ-dono
2e donor.
better π-acce
bilises the me | er.
eptor than PF | r3.
1 higher oxid | dation state | 2S. | | | | | 15. Which o
1) | ne of the foll
Hetero-atoms | owing staten
are attached | nents is not
I to the carb | true about
ene carbot | Fischer ca
1. | irbenes? | | 2) Carbene carbon contains a -δ charge. 3) Carbene carbon is readily attacked by nucleophiles. 4) Metal is in a low oxidation state. | | (i) only.
(ii) & (iii) only. | | & (ii) only.
(ii) & (iii) only | | | | |----------------------------|---|---|-----------------------------------|-----------------------|-----------------|-----------| | | back donation in m | | (11) 01 (111) 0111) | · • . | | | | 1) | | | .aad | | | | | 2) | | | iscu, | | | | | , | | | | | | | | 3)
4\ | the M-CO bond lea | ngin is decrease | a. | | | • | | 4) | the o-character of | the M-CO bon | d is increased. | | | | | 19. Accord
[CoCl(
1) | ding to the Ionic Moo
$(\eta^1-C_3H_5)(\eta^2-C_2H_4)(\eta^2-C_2H_4)$ | del, what is the ⁵ -C ₅ H ₅)] (atom: 3) 3 | oxidation numic number of Co | ber of Co io is 27) ? | n | | | 20. [(5.0) | II.) G (60) 1: | • | | | | | | 1)
2) | ₅ H ₅) ₄ Cr ₂ (μ-CO) ₂] is a
nents is true about the
Each chromium cer
This is not a symme
There is a no Cr–C ₁ | e above comple
atre has 16 vale
etrical molecule | x? (Group num)
nce electrons. | nplex. Which | ch one of the f | following | | 4) | | | Iging carbonyl | ligands. | | | | | | | | J | | | | | | | | | | | | | | | | • | • | • | | | | | • | | | | | | | • | • | | | | | 16. What is not true about the dinitrogen ligand? (i) Isocyanides (RN \equiv C) are stronger π -acceptors than CO. (ii) CO is a stronger π -acceptor than PMe₃. (iii) PF₃ is stronger π -acceptor than PMe₃. 1) It is isolectronic with CN-. 2) It can act as a terminal ligand 3) It can act as a bridging ligand 4) It cannot act as a dihapto ligand 17. Consider the following statements, The correct statement/s is/are ### THE OPEN UNIVERSITY OF SRI LANKA B.Sc. DEGREE PROGRAMME 2008/2009 CHU3127/CHE5127 – ORGANOMETALLIC CHEMISTRY- LEVEL 5 ASSIGNMENT TEST I - MCQ TEST MCQ ANSWER SHEET: Mark a cross (X) over the most suitable answer. | g.No/Index No. | | | | | JERSI' | |----------------|-------------|-----|-----------|--------|-----------| | | | | | | LIBY LIBY | | | | | | | Wales & | | Marks | | | | | | | Part A | | • | FOR EX | | R'S USE | | | | | Unanswe | | | | Part B | | | Correct A | | | | Total % | | | Wrong A | nswers | | | | | | Total | | | | | | | l | | | | 1. 1 2 3 4 | 2. | 1 2 | 3 4 | 3. | 1 2 3 4 | | 4. 1 2 3 4 | 5. | 1 2 | 3 4 | 6. | 1 2 3 4 | | 7. 1 2 3 4 | 8. | 1 2 | 3 4 | 9. | 1 2 3 4 | | 10. 1 2 3 4 | 11. | 1 2 | 3 4 | 12. | 1 2 3 4 | | 13. 1 2 3 4 |] 14. | 1 2 | 3 4 | 15. | 1 2 3 4 | | 16. 1 2 3 4 | 17. | 1 2 | 3 4 | 18. | 1 2 3 4 | | 19. 1 2 3 4 | 20. | 1 2 | 3 4 | | | #### Part B (40 marks) Answer all the questions in the space provided. Attached sheets will not be graded. 1. (a) Give IUPAC names for the following complexes. i. [CoCl(η^{1} -C₃H₅)(η^{2} -C₄H₄)(η^{2} -C₂H₄)] ii. [FeBr₂(η^5 -C₅H₅)(PPh₃)(CO)] (b) Draw the structures of the following complexes. i. $[CoCl(\eta^1-C_3H_5)(\eta^2-C_4H_4)(\eta^2-C_2H_4)]$ ii. $(\eta^3$ -Allyl) $(\eta^5$ -cyclopentadienyl) $(\eta^2$ -ethene)molybdenum - (c) (i) Determine the VEC of cobalt in $[CoCl(\eta^3-C_3H_5)(\eta^2-C_2H_4)]$ using ionic model. (Indicate your break down; Group number of Co is 9) - (ii) Determine the VEC of iron in [FeBr(η⁵-C₅H₅)(PPh₃)(CO)] using covalent model. (Indicate your break down; Group number of Fe is 8) - (d) Draw the structure of the following coordinatively saturated complex $[(\eta^6-C_6H_6)_2Co_2(\mu-CO)_2]$. | 2. | (a) Determine the coordination number of Mn in [(η ⁵ -C ₅ H ₅)Mn(CO) ₃]. | |----|---| | | | | | | | | | | | | | | (b) What is meant by "α-agostic interaction"? Draw the structure of
[TiCl(=CH ₂)(η ⁵ -C ₅ H ₅) ₂], indicating the α-agostic interaction. | | | | | | | | | | | | (c) Arrange NO ⁺ , CN ⁻ and CO in the order of increasing π-acceptability. | | | (d) (i) Give the relationship between the shape of the M-NO fragment and the number of electrons donated by the NO ligand. | | | | | | (ii) Deduce the coordination geometry of the Mn-NO fragment in the 18e-complex [Mn(NO)(CO) ₄ (PPh ₃)]. | | | | | | | | | (e) Draw and identify the two geometrical isomers of [FeBr ₃ (PPh ₃) ₃]. | | | | # ASSIGNMENT TEST 1(NBT) - ANSWER GUIDE CHU 3127 / CHE 5127 # PART (A) $$_{13.}$$ $_{(3)}$ $_{14.}$ $_{(3)}$ $_{15.}$ $_{(2)}$ $_{16.}$ $_{(4)}$ $_{17.}$ $_{(3)}$ $_{18.}$ $_{(3)}$ ## PART (B) -) (a) (i) (η'-allyl) chloro (η'-cyclobutadiene) (η'-ethene) cobalt - (ii) dibromocarbonyl (75-cyclopentadienyl) triphenyl phosphineiron (ii) (2) (a) Mn^{2t} receives 12 electrons or 6 electron pairs the ligands; therefore the coordination number = 6 A Transport of the Control Co (b) Weak Interaction between a metal centre and a bonding electron pair of a C-H bond of an « - carbo - (4) CN < CC < NO+ - Linear Bent (d)(i) M—NO fragment Number of e^{nsy} donated by NO 1è - (ii) If x = no, of electrons donated by NO Mn = 7e NO _ XE 4x CO = 8e PPh3 = 2e =4 X = 1 = 1 bent mer-isomer