

THE OPEN UNIVERSITY OF SRI LANKA

B.Sc/ B.Ed DEGREE PROGRAMME/ STAND ALONE COURSES IN SCIENCE

FINAL EXAMINATION- LEVEL 5- 2006/2007

CHU 3127/ CHE 5127- ORGANOMETALLIC CHEMISTRY

(2 ½ hours)

Friday 24th November 2006

1.30 a.m.- 4.00 p.m.

ANSWER ANY FOUR QUESTIONS.

IF MORE THAN FOUR QUESTIONS ARE ANSWERED, ONLY THE FIRST FOUR ANSWERS WILL BE MARKED.

- 1.(a) Give IUPAC names of the following complexes.
 - i. $[(\eta^5-C_5H_5)Fe(\eta^1-CH=CH_2)(CO)_2]$
 - ii. $K[Mo(\eta^5-C_5H_5)(CO)_2]$
 - iii. $[(\eta^5-C_5H_5)CoMe(CO)(PPh_3)]Cl$

(30 marks)

- (b) Draw the structures of the following complexes.
 - i. Trichloro(η²-ethene)platinate ion
 - ii. $Bis(\eta^3$ allyl)palladium
 - iii. $(\eta^1$ allyl)tricarbonyl $(\eta^5$ -cyclopentadienyl)molybdenum
 - $iv.\ Carbonyl(\eta^3\text{-cyclopropenyl})hydrido(\eta^1\text{-phenylethynyl})iridium$

(40 marks)

- (c) Determine the Valence Electron Count (VEC) of the following complexes using the covalent model. (Indicate, in your work out, the electron contribution made by each ligand)
 - i. $[(\eta^5 C_5H_5)W(\eta^3 C_5H_5)(CO)_2]$

(W is a Group 6 metal)

ii. $[(\eta^5 - C_5H_5)Fe[(\eta^1 - CH = CH_2)(CO)(N_2)]$

(Fe is a Group 8 metal)

iii. $[Ru(\equiv CPh)Cl(CO)_2(PPh_3)]$

(Ru is a Group 8 metal)

(30 marks)

- 2. (a) Using a suitable diagram, describe the bonding between Pt and -C≡CMe group. (20 marks)
 - (b) $[(\eta^5 C_5H_5)_2Fe_2(\mu_2-CO)_2(CO)_2]$ is a coordinatively saturated complex. Deduce the structure of this complex. (25 marks)
 - (c) Work out the Group number of Nb. Write the dⁿ representation for Nb³⁺.

 (Atomic number of Nb is 41) (15 marks)
 - (d) Determine the coordination number of Tc (group 7 metal) in $[(\eta^5 C_5H_5)Tc(\eta^2 cyclooctatetraene)(CO)_2]. \tag{20 marks}$
 - (e) List three ligands which are isoelectronic with CO. Arrange them in the order of increasing π -acceptor ability. (20 marks)
- 3. (a) Draw all the possible isomers of [RuBr₂(cn)(NH₃)₂]. (20 marks)
 - (b) What are the main differences between Fischer-carbenes and Schrock-carbenes? (20 marks)
 - (c) How do you account for the variation in carbonyl stretching frequencies of the following compounds? (v_{CO} of free CO is 2143 cm⁻¹)

Compounds	v_{CO}/cm^{-1}	
[Cr(CO) ₆]	2000	
	1860	
[V(CO) ₆] ⁻ [Mn(CO) ₆] ⁺	2090	(30 marks)

- (d) E-Acetophenone dimethylhydrazone, Ph(Me)C(=NNMe₂) reacts with Na₂PdCl₄ to give a chloride bridged Pd(II) dimer containing a five-membered ring. Draw the structure of this dimer. (20 marks)
- (e) Metal carbonyls are very common in nature compared to dinitrogen compounds. Explain this observation. (10 marks)
- 4. Draw the structure(s) of the major product(s) of each of the following reactions using the hint given in brackets.
 - (a) trans [IrCl(CO)(PPh₃)₂] + O₂ \rightarrow (oxidative addition)
 - (b) cis [PtCl(Et)(PMc₃)₂] $\xrightarrow{\Delta}$ (β -H abstraction)

- (c) Trans-[IrCl(CO)(PPh₃)₂] + H-C=C-H \rightarrow (association)
- (d) [Ni(PEt₃)₃] + PhCl → (oxidative addition)
- (e) $2[Co(CN)_5]^{3-} + MeI \rightarrow$ (1e oxidative addition)
- (f) Fe(PMe₃)₄ + 2MeC≡CMe → (oxidative coupling)
- (g) $PtCl_2(pyridine)(\eta^2-CH_2=CH_2)$ + pyridine \rightarrow (nucleophilic addition)
- (h) $Fe(PMe_3)_4 \xrightarrow{\Delta}$ (cyclomethalation)
- (i) Mn(CO)₅(η^2 -CH₂CH=CH₂ \rightarrow (loss of CO and coordination)
- (j) MeMn(CO)5 + PPh3 → (insertion and association) (100 marks)
- 5. (a)(i) Arrange, giving reasons, the phosphines PX_3 (X= Me, OMe, OAr, Cl, F) in the increasing order of their σ donor ability and π acceptor ability.
 - (ii) Explain the bonding between a metal and a phosphine ligand PX₃.
 - (iii) Arrange the v_{CO} of [Ni(CO)₃PX₃] with varying X from Me, OMe, OAr, Cl, F with respect to CO. (25 marks)
 - (b)(i) [TiEt₄] does not exist at room temperature whereas [PbEt₄] is stable at temperatures below 100°C. Explain why this is so.
 - (ii) Write possible pathways for the decomposition of [TiEt₄], giving the products in each case. (20 marks)
 - (c) fac- [PdIMe₃(NMe₂CH₂CH₂NMe₂)] undergoes reductive elimination to give the square planar complex [PdIMe(NMe₂CH₂CH₂NMe₂)].
 - (i) What is the molecule that is eliminated?
 - (ii) Write the changes in the Valence Electron Count (VEC), oxidation number and the coordination number of the metal. (20 marks)

- (d) [Co(CO)₄] radical dimerizes to give [Co₂(CO)₈], which in the solid state has one Co-Co bond and two bridging carbonyls. In solution, however, it has no bridging carbonyl ligand.
 - Calculate the Valence Electron Count (VEC) of the species [Co(CO)₄] and (i) $[Co_2(CO)_8].$
 - Draw the structures of the complex [Co₂(CO)₈] in solid state and in solution. (ii)
 - How are these distinguished from one another using spectroscopic method(s)? (iii)

Write a method of synthesis of [Co₂(CO)₈] starting from Co(OAc)₂. 4 H₂O, giving (35 marks) only the reagents and conditions used.

6.(a) [Mo(CO)₆] reacts with two moles of PPh₃ to give a terracarbonyl Mo(0) complex A, which shows only one infra-red band in the carbonyl region.

Deduce the structure of A.

(20 marks)

(b) The presence of M-H group in a metal hydride is confirmed by converting the M-H group to M-D (D = deuterium, ${}_{1}^{2}H$) group and recording the infra-red spectrum.

Where will the new M-D stretching appear with respect to the position of M-H stretching?

Give reason(s) for your answer.

Calculate the v(Ir-D) value if v(Ir-H) is 2240 cm⁻¹.

(20 marks)

- (c) Give three reasons as to why transition metal complexes are used as catalyst. Distinguish between homogeneous catalyst and heterogeneous catalyst, giving one (20 marks) example of each.
- (d)(i) The monohydride [RuHCl(PPh3)3] is coordinately unsaturated and catalyses hydrogenation of olefins. Write a possible mechanism for the hydrogenation of ethene by [RuHCl(PPh₃)₃].
 - (ii) Draw the catalytic cycle for the hydroformylation of RCH2=CH2 to RCH2CH2CHO using [RhH(CO)(PPh₃)₂] as active catalyst (Union Carbide Process). (40 marks)