

The Open University of Sri Lanka **B.Sc. Degree Programme** Applied Mathematics - Level 04 Open Book Test-2017/2018 ADU4302/ADE4302 — Vector Calculus

DURATION: ONE HOUR

Time: 10.30 a.m. -11.30 a.m. Date: 16.06. 2018

ANSWER ALL QUESTIONS.

- (a) Find the domain and range of the function $f(x, y) = \sqrt{9 x^2 y^2}$.
 - (b) Sketch the level curves of the above function.
 - (c) Evaluate the following limits, if they exist:

(i)
$$\lim_{(x,y)\to(0,0)} \frac{x^2-y^2}{x^2+y^2}$$
, (ii) $\lim_{(x,y)\to(0,0)} \frac{5x^2y^2}{x^2+y^2}$.

(ii)
$$\lim_{(x,y)\to(0,0)} \frac{5x^2y^2}{x^2+y^2}$$

(d) If $x = r\cos\theta$, $y = r\sin\theta$ then show that

(i)
$$\frac{\partial r}{\partial x} = \frac{\partial x}{\partial r}$$
,

(ii)
$$\frac{1}{r}\frac{\partial x}{\partial \theta} = r\frac{\partial \theta}{\partial x}$$
,

(iii)
$$\frac{\partial^2 r}{\partial x^2} = \frac{y^2}{r^3} ,$$

(iv)
$$\frac{\partial^2 r}{\partial y^2} = \frac{x^2}{r^3}$$
.

- (e) If u = f(r) and $x = r \cos \theta$, $y = r \sin \theta$ then show that $\frac{\partial^2 u}{\partial r^2} + \frac{\partial^2 u}{\partial v^2} = f''(r) + \frac{f'(r)}{r}.$
- (a) Find the equations of the tangent plane and normal line to the surface $z^2 = 4(1 + x^2 + y^2)$ 2. at (2,2,6).
 - (b) Expand $e^x \ln(1+y)$ in powers of x and y using Taylor's theorem.
 - (c) Find the stationary points of the function $f(x, y) = x^3 + 3xy^2 15x^2 15y^2 + 72x$ and determine their nature.