The Open University of Sri Lanka

B.Sc/B.Ed. Degree Programme

Final Examination - 2017/2018

Pure Mathematics - Level 04

PEU4301 – Real Analysis II

Duration: - Two hours

Date: 22.04.2019

Time: 1:30 p.m. - 3:30 p.m.

Answer FOUR questions only.

Q1)

a) Let f be a function from \mathbb{R} to \mathbb{R} and $a \in \mathbb{R}$. Prove that f is continuous at a if and only if f is left-continuous at a and f is right-continuous at a.

b) Let
$$f(x) = \begin{cases} 5x + 2, & \text{if } x \le 0 \\ x^2, & \text{if } x > 0. \end{cases}$$

Show that

- (i) f is left-continuous at x = 0, and
- (ii) f is not continuous at x = 0.
- c) Let $f(x) = \frac{7x-2}{8x+9}$ for each x > 0. Prove that $\lim_{x \to +\infty} f(x) = \frac{7}{8}$.

Q2)

- a) State the definition of uniform continuity of a function on an interval.
- b) Let f be a function defined on [a, b] such that f is uniformly continuous on [a, b]. Prove that f is continuous on [a, b].
- c) Let $f(x) = \frac{1}{x^2}$ for $x \neq 0$. Show that
 - (i) f is uniformly continuous on $[1, +\infty)$, and
 - (ii) f is not uniformly continuous on (0, 1].
- d) Let $f:(0,1] \to \mathbb{R}$ be defined by $f(x) = \sin \frac{1}{x}$. Show that f is not uniformly continuous on (0,1].

Q3)

a) Let f, g and h be three real valued functions defined on an interval $(a, b) \subseteq \mathbb{R}$, except possibly at the point $c \in (a, b)$, such that $f(x) \leq g(x) \leq h(x)$ for each

 $x \in (a,b) - \{c\}$, and $\lim_{x \to c} f(x) = L = \lim_{x \to c} h(x)$ for some $L \in \mathbb{R}$. Prove that $\lim_{x \to c} g(x) = L$.

- b) Let F be a real valued function such that F(x) is bounded on [-a, a], where a is a positive real number. Prove that $\lim_{x\to 0} x^2 F(x) = 0$.
- c) Find the following limits:
 - (i) $\lim_{x\to 0} x^2 e^{\sin\left(\frac{1}{x}\right)}$ and
 - (ii) $\lim_{x \to 0} f(x)$, where $f(x) = \begin{cases} 0, & \text{if } x \in \mathbb{Q}^c \\ x^2, & \text{if } x \in \mathbb{Q} \end{cases}$

Q4)

a) Let f be a real value function defined on the open interval I and $a \in I$. State the $\varepsilon - \delta$ definition for differentiability at point a.

Let the function $f:(0,+\infty)\to\mathbb{R}$ be defined by $f(x)=\sqrt{x},\ x\in(0,+\infty)$. Show that f is differentiable at x=16 and $f'(16)=\frac{1}{8}$.

b) Prove that if f is differentiable at point a, then f is continuous at a.

Show that the function f defined by $f(x) = \begin{cases} \frac{1}{x} \sin\left(\frac{1}{x^2}\right), & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases}$ is not differentiable at point 0.

- **Q5)** State the Rolle's theorem and the Mean-Value theorem for derivatives for a function f that is continuous on [a,b] and differentiable on (a,b).
 - (i) Prove that if f'(x) = 0 for each $x \in (a, b)$ then f(x) is a constant on (a, b).
 - (ii) Show that the equation $e^x + x^3 = 2$ has a unique real root.
 - (iii) Let $f(x) = x^3 4x$. Show that there is precisely one $a \in (-2, 1)$ which satisfies the conclusion of the Mean-Value thorem on [-2, 1].

Q6)

- a) Let f be a real value function defined on an open interval (a,b) and let f has a local maximum at $c \in (a,b)$. Prove that if f is differentiable at point c, then f'(c) = 0.
- b) Find the following limits if they exist:

(i) $\lim_{x \to 0} \frac{1 - \cos x}{x^2}$ (ii) $\lim_{x \to 0} \left(\frac{1}{e^x - 1} - \frac{1}{x} \right)$ (iii) $\lim_{x \to 0^+} (1 + \sin 4x)^{\cot x}$