

The Open University of Sri Lanka

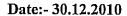
B.Sc Degree Programme/ Continuing Education Programme

Final Examination- 2010/2011

Level 04- Pure Mathematics

PMU2191/PME4191 - Vector Analysis

Duration:- Two hours



Time:- 1.00p.m.-3.00p.m.

Answer Four Questions only.

- 1. (a) Consider the equation $\left(p + \frac{a}{v^2}\right)(v b) = ct$, where the variables p, v and t denote the pressure, volume and temperature respectively, and a, b, c are constants. Show that $\left(\frac{\partial p}{\partial v}\right)\left(\frac{\partial v}{\partial t}\right)\left(\frac{\partial t}{\partial p}\right) = -1$.
 - (b) Find the Second order Taylor polynomial for the function $f(x, y) = e^x \sin ay$ about the point (0, 0).
 - (c) Considering a suitable multivariable function, estimate the value of $2.23\sqrt{5.36^3-1.96^2}$.
- 2. (a) (i) Define a stationary point of a single valued function f(x, y), defined over the domain D. Explain briefly how you would determine its nature.
 - (ii) Determine the nature of the stationary points of the function $f(x, y) = 3x^2y + y^3 3x^2 3y^2 + 2.$
 - (b) Find the directional derivative of the function $\phi = x^2yz + 4xz^2$ at the point (1, -2, -1) in the direction of the vector $2\underline{i} j 2\underline{k}$.
 - (c) Evaluate the scalar line integral of the vector function $\underline{F} = (3x^2 4xy)\underline{i} + (3y^2 5xy)\underline{j}$ along the path C, where C is the arc of parabola $y = x^2$ from A = (0, 0) to B = (2, 4).

- 3. (a) Use surface integrals to find the closed area bounded by $y = x^2 4x + 5$ and $y = -x^2 + 4x 1$. (No credit will be given for other methods)
 - (b) Evaluate the surface integral $\int_{S} y^2 dA$, where S is the boundary of the triangular region enclosed by y=1, x=2 and y=x+1.
 - (c) Use surface integrals to calculate the area of the quarter of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ for which $x \ge 0$ and $y \ge 0$.
- 4. (a) Find the moment of inertia of a solid circular cylinder of constant density ρ , radius a and height h about its axis of symmetry.
 - (b) Find $\int_{B} z^{3} \sqrt{x^{2} + y^{2} + z^{2}} dV$, where B is the solid hemisphere, with the centre at the origin, radius 1, that lies above xy plane.
 - (c) Find volume of the tetrahedron bounded by the coordinate planes and the plane 3x + 2y + 6z = 6.
- 5. (a) State Gauss' divergence theorem.
 - (b) Use Gauss' divergence theorem to evaluate the surface integral $\oint_S gradf \cdot \underline{n} \, dA$, where f is the scalar field $f(x, y, z) = x^4 + y^4 + z^4$ and S is the spherical surface $x^2 + y^2 + z^2 = a^2$, the vector \underline{n} having its usual meaning.
 - (c) Prove that (i) $\nabla \cdot \left(r \nabla \left(\frac{1}{r^3} \right) \right) = 0$ (ii) $\nabla \cdot \left(r^3 \underline{r} \right) = 6r^3$, where \underline{r} and \underline{r} carry the usual meanings.
- 6. (a) State Stoke's theorem.
 - (b) Verify the Stoke's theorem for the vector field $\underline{F} = -y\underline{i} + x\underline{j}$, where the surface S is the disk $x^2 + y^2 \le a^2$ in the z = 0 plane, oriented by the upward unit normal \underline{n} .
 - (c) If $\underline{v} = \underline{w} \times \underline{r}$, prove that $\underline{w} = \frac{1}{2} curl \underline{v}$, where \underline{w} is a constant vector and \underline{r} carries the usual meaning.