The Open University of Sri Lanka B.Sc./B.Ed Degree Programme Final Examination 2017/2018 Applied Mathematics – Level 04 ADU4302/APU 2143- Vector Calculus **Duration**:- Two Hours.

Date: -22.09.2018

Time: - 1.30 p.m. - 3.30 p.m.

Answer Four Questions Only.

- 1. (a) State and sketch the domain of the function $f(x, y) = \frac{\sqrt{1+x+y}}{x-1}$.
 - (b) Sketch the level curves of the function $f(x, y) = \frac{1}{x^2 + y^2 + 1}$.
 - (c) Find the following limits, if they exist:

(i)
$$\lim_{(x,y)\to(0,0)} \frac{x^2 - xy + y^2}{x^2 + y^2}$$

(i)
$$\lim_{(x,y)\to(0,0)} \frac{x^2 - xy + y^2}{x^2 + y^2}$$
, (ii) $\lim_{(x,y)\to(0,0)} \frac{x^2 + y^2}{\sqrt{x^2 + y^2 + 1} - 1}$.

(d) Discuss the continuity of the following functions, at the origin:

(i)
$$f(x, y) = \begin{cases} \frac{x^2 - xy + y^2}{x^2 + y^2} & \text{if } (x, y) \neq (0, 0) \\ 0 & \text{if } (x, y) = (0, 0) \end{cases}$$

(i)
$$f(x, y) =\begin{cases} \frac{x^2 - xy + y^2}{x^2 + y^2} & \text{if } (x, y) \neq (0, 0) \\ 0 & \text{if } (x, y) = (0, 0). \end{cases}$$

(ii) $f(x, y) =\begin{cases} \frac{x^2 + y^2}{\sqrt{x^2 + y^2 + 1} - 1} & \text{if } (x, y) \neq (0, 0) \\ 2 & \text{if } (x, y) = (0, 0). \end{cases}$

2.(a) If a scalar field in Cartesian coordinates is f(x, y) and the corresponding scalar field in plane polar coordinates is $g(r, \theta)$ then $f(x, y) = g(r, \theta)$.

The relationships between the coordinates are given by $x = r \cos \theta$ and $y = r \sin \theta$.

(i) Show that
$$\frac{\partial r}{\partial x} = \cos \theta$$
 and $\frac{\partial r}{\partial y} = \sin \theta$

(ii) Show that
$$\frac{\partial \theta}{\partial x} = -\frac{\sin \theta}{r}$$
 and $\frac{\partial \theta}{\partial y} = \frac{\cos \theta}{r}$

(iii) Hence show that
$$f_x = g_r \cos \theta - g_\theta \sin \theta / r$$
 and $f_y = g_r \sin \theta + g_\theta \cos \theta / r$.

Here f_x , f_y have a standard meaning. Similarly for the others.

(iv) Show that
$$f_{xx} = g_{rr} \cos^2 \theta - g_{r\theta} \frac{2 \sin \theta \cos \theta}{r} + g_{\theta} \frac{2 \sin \theta \cos \theta}{r^2} + g_r \frac{\sin^2 \theta}{r} + g_{\theta\theta} \frac{\sin^2 \theta}{r^2}$$
 and find a similar expression for f_{yy} .

- (v) Hence determine a formula in polar coordinates for $\nabla^2 f = f_{xx} + f_{yy}$.
- (b) (i) If $g = r^2 \sin 2\theta$ then find f(x, y) and $\nabla f(x, y)$ in x and y.
 - (ii) Find the directional derivative at the point (1, 3) in the direction parallel to (3, 4).
- 3. (a)(i) Prove that grad ϕ is a vector normal to the contour surface $\phi(x, y, z) = c$, where c is a constant.
 - (ii) Show that the equation of the tangent plane to the surface F(x, y, z) = 0 at the point $P(x_0, y_0, z_0)$ is given by $(x x_0) \left(\frac{\partial F}{\partial x}\right)_P + (y y_0) \left(\frac{\partial F}{\partial y}\right)_P + (z z_0) \left(\frac{\partial F}{\partial z}\right)_P = 0$.
 - (iii) Using the above result, find the equation of the tangent plane to the surface $F(x, y, z) = e^x \cos y$ at the point (0, 0, 1).
- (b) (i) Define a stationary point of a single valued function f(x, y) defined over a domain D. Explain briefly how you could determine the nature of the stationary point.
 - (ii) Find the maximum and minimum values of the function $f(x, y) = 4x^2 + 4y^2 + x^4 6x^2y^2 + y^4$ and determine their nature.
- 4. (a) State Gauss' Divergence theorem.
 - (b) Verify the above theorem considering the vector field $\underline{F} = (z+a)\underline{k}$ taken over the entire surface of the solid hemisphere $x^2 + y^2 + z^2 \le a^2$ and $z \ge 0$.
 - (c) Let $\underline{r} = x \underline{i} + y \underline{j} + z \underline{k}$ and $r = |\underline{r}|$ then prove the following.
 - (i) $\nabla \cdot \underline{r} = 3$,
 - (ii) $\nabla \times \underline{r} = \underline{0}$,
 - (iii) $\nabla r^n = nr^{n-2}\underline{r}$ where *n* is a constant,

(iv)
$$\underline{\nabla} \cdot r^n \underline{r} = (n+3)r^n$$
, (Hint $\underline{\nabla} \cdot (f\underline{A}) = \underline{\nabla} f \cdot \underline{A} + f \underline{\nabla} \cdot \underline{A}$),
(v) $\underline{\nabla} \times (r^n \underline{r}) = \underline{0}$, (Hint $\underline{\nabla} \times (f\underline{A}) = \underline{\nabla} f \times \underline{A} + f \underline{\nabla} \times \underline{A}$).

- 5. (a) State Stokes' Theorem.
 - (b) Verify Stokes' Theorem considering the vector field $\underline{F} = xz\underline{j}$ defined over the section of a sphere of radius a and $0 \le \theta \le \alpha$.
 - (c) Prove that the vector field $\underline{F} = (e^x (x \cos y + \cos y y \sin y), e^x (-x \sin y y \cos y), 0)$ is irrotational and find a corresponding scalar potential function ϕ such that $\underline{F} = \underline{\nabla} \phi$.
- 6. (a) Suppose that S is a plane surface lying in the xy-plane, bounded by a closed curve C. If $\underline{F} = P(x, y)\underline{i} + Q(x, y)\underline{j}$ then show that $\oint_C (Pdx + Qdy) = \iint_S \left(\frac{\partial Q}{\partial x} \frac{\partial P}{\partial y}\right) dxdy$.
 - (b) Verify the above result for the integral $\oint_C x^2 y \, dx + xy^2 dy$, where C is the closed curve formed by $y^2 = 4ax$ and x = a; a > 0.