THE OPEN UNIVERSITY OF SRI LANKA B.Sc/B.Ed DEGREE PROGRAMME - 2013/2014 Level 4 - CMU2122/CME4122 INORGANIC CHEMISTRY ASSIGNMENT TEST I (NBT) | 2 nd March 2014 (Sunday) | Duration: 1 hour | 11.00 – | - 12.00 noon. | |---|---|--|---------------------------------| | Answer all questions Select the most correct answe on the given answer sheet. A | | | | | 1. Consider the following liga
(a) methyl
The monodentate ligand/s | (b) bromide is/are | (c) ox ²⁻ | | | 1) (b) only
4) (b) & (c) only | 2) (a) & (b) only
5) (a), (b) & (c) | 3) (a) & (c) | only | | 2. The IUPAC name of the co
1) Diamminetribromo
2) Tribromocarbonylo
3) Diamminetribromoca
4) Diamminetribromoca
5) Diamminetribromoca | ocarbonylferrate(III) diammineiron(III) ocarbonyliron(II) arbonyliron(III) | is | | | 3. What is the most likely geo
1) Trigonal planar
4) Square pyramidal | ometry of [Co(gly)(ox)(CO
2) Square plana
5) Octahedral | | e; ox = oxalate)
Cetrahedral | | 4. What is the coordination n 1) +2 2) 4 | | (ox)(CO)]
() +3 | · | | 5. Predict the spin only magn and $\mu = [n(n+2)]^{1/2}$ B.M. (4) 1) 1.73 2) 2.8 | Atomic number of $Fe = 26$ | lex [Fe(H ₂ O) ₆]Cl _{2.} Wa
)
4) 4.89 5) 5 | | | This complex does | or ligands are <i>trans</i> to each show optical isomerism. ivity of this complex is not cy of Fe is 6. | other. | $I_3)_2]?$ | | 7. Consider the following statements. | | |---|---| | (a) CO is a π -acceptor. | 1 1 - the motel contro | | (a) CO is a π-acceptor.(b) Back donation increases the electron | density at the metal centre. | | (c) σ-donors can be called as Lewis base | S. | | The correct statement/s is/are | | | 1) (a) only · 2) (a) and (c) only | 3) (b) and (c) only | | 4) (a) and (b) only 5) (a), (b) and (c) | | | (a) and (b) | | | | | | 8. Pick the correct statement from the following | statements about [Fe(H ₂ O) ₆]Cl ₃ | | which is paramagnetic. Water is a weak field | ligand. | | 1) Its CFSE is zero. | | | 2) Oxidation state of Fe is +2. | | | | • | | 3) It is a low-spin complex. | | | 4) It is an inner-orbital complex. | , 3 | | 5) Hybridization of the metal centre is d | sp^{3} . | | • | | | 9. Consider the following statements regarding the | ne diamagnetic complex [CoCl(NH ₃) ₃]·H ₂ O. | | (a) Oxidation and coordination numbers | of Co are +1 and 4, respectively. | | (b) The hybridization of cobalt in this co | | | (c) This shows square planar geometry. | | | The correct statement/s is/are, | | | 1) (b) only 2) (a) & (c) only | 3) (b) & (c) only | | 4) (a) & (b) only 5) (a), (b), & (c) | | | (0) only (0), (0), (0), (0) | | | (b) x is the coordination number of M | donating lone pair electrons to the metal. and $n+$ is the oxidation number of M. ecule in $[M(H_2O)_6]^+$ is faster for Li than K. | | 4) (a) & (b) only 3) (a), (b), & (c) | ' | | 11. The number of geometric isomers of the con | anlay (FaDr (NIII)] and | | 11. The number of geometric isomers of the con 1) 6 2) 5 3) 4 4) 3 | - | | 1) 6 2) 5 3) 4 4) 3 | 5) 2 | | 12. Pick the correct statement from the followin It is a paramagnetic complex anion. 1) Hybridisation of Co ³⁺ is sp^3d^2 2) It is an inner-orbital complex 3) It is a low-spin complex 4) Fluoride is a strong field ligand 5) IUPAC name is hexafluorocobalt(III) | | | 13. Which one of the following complexes wou measurement? | | | 1) $[FeCl(CO)_5]Cl_2$ 2) $[FeCl_3(CO)_5]$ | | | 4) $[Pd(CO)_4][PdCl_4]$ 5) $[FeCl_2(CO)_4]$ | Cl | | | | | | | | | a . | | 14. Consider the following statements. (a) Fe ²⁺ forms less stable compounds than Fe ³⁺ . | |---| | (b) CFSE of $[Co(CN)_6]^{3-}$ is lower than that of $[Co(H_2O)_6]^{3+}$.
(c) Larger the β value higher the thermodynamic stability of the complex. | | The correct statement is/are | | 1) (b) only 2) (b) & (c) only 3) (a) & (c) only 4) (a) & (b) only 5) (a), (b), & (c) | | 15. Consider the statements (a), (b) and (c) regarding the two compounds (P) and (Q) given below. | | (P) $[CoBr(NH_3)_5]NO_3$ (Q) $[Co(NO_3)(NH_3)_5]Br$
(a) (P) shows ionization isomerism. | | (b) AgNO₃ can be used to distinguish (P) from (Q). (c) (Q) shows linkage isomerism. | | The correct statement/s is/are | | 1) (b) only 2) (a) and (c) only 3) (a) and (b) only 4) (b) and (c) only 5) (a), (b) and (c) | | 16. How many unit cells in a crystal lattice share the atom marked by the filled circle in the diagram below? | | | | 1) one 2) two 3) four 4) eight 5) six | | Select the incorrect statement from the following statements. Molecules or atoms in a molecular solid are held together through intermolecular forces. Metallic solids have an atom in each point of the crystal lattice. Ionic solids have one formula unit in each point of the crystal lattice. Atoms in a covalent-network solid are connected through a network of covalent bonds. Solid Potassium chloride does not conduct electricity. | | 18. The unit cell produced as a result of packing of copper atoms through ABABAStacking of copper atoms is | | 1) Face centred cubic 2) Hexagonal 3) Body centred cubic 4) Primitive 5) Rhombic | | 19. A given sample of element having bcc structure has 12.08 x 10 ²³ unit cells. The number of | | atoms in the sample is 1) 12.08×10^{23} 2) 24.16×10^{23} 3) 48.38×10^{23} 4) 12.08×10^{22} 5) 20.00×10^{23} | | 20. Consider the following statements regarding a chemical defect in a crystal (a) composition of the lattice is changed due to new chemicals incorporated. (b) ruby is an example of a crystal lattice with chemical impurity. (c) crystal colour may be due to the incorporation of transition metal ions. | |---| | The correct statement/s is/are 1) (a) only 2) (a) and (b) only 3) (a) and (c) only 4) All (a), (b) and (c) 5) none of (a), (b) or (c) | | 21. Repeatable entity of a crystal structure is known as 1) Crystal 2) Lattice 3) Unit cell 4) Miller indices 5) interstitial atom | | 22. Which of the following can be stated as a line imperfection? 1) Schottky defect 2) Frenkel defect 3) Edge dislocation 4) F-centre 5) K-centre | | 23. The number of nearest neighbours for an atom in a closest packed crystal structure is (1) sixteen (2) twelve (3) eight (4) four (5) six | | 24. Schottky-defect in a potassium chloride crystal can be derived through 1) Interstitial impurity 2) Vacancy-interstitial pair of cations 3) Pair of nearby cation and anion vacancies 4) Substitutional impurity 5) None of the above | | 25. In making steel, carbon atoms of a radius of 0.071 nm fit in to the interstitial spaces of close packed structure of iron (radius 0.124 nm). (a) It is a case of a substitutional impurity. (b) It is a case of an interstitial impurity. (c) It is a case of a hole formation in the lattice of Fe. | | The correct statement/s is/are 1) (a) only 2) (b) only 3) (b) and (c) only 4) (a) and (b) only 5) (a), (b) and (c). | ## THE OPEN UNIVERSITY OF SRI LANKA B. Sc DEGREE PROGRAMME 2013/2014 CMU2122/CME4122 – INORGANIC CHEMISTRY- LEVEL 4 ASSIGNMENT TEST-I MCQ ANSWER SHEET: Mark a cross (X) over the most suitable answer. | | | 1 | | | | | | | | | | | | | | | Marks | | |------|-----|---|---|---|----|---------|--------|------|------|------|-------|---|---|---|-------------|---|-------|-----| | Reg. | No. | | | | | | F | or E | lxam | iner | s Use | | | - | Tota | | | | | | | | | | | | | | | | Marks | 3 | | L | | | ł | | | | | | | | Co | rrect A | hswers | | | | | | ٠ | | | | | | | | | | | 4 | Wr | ong Ans | wers | | | | | | | | | | | | | | | | | | То | tal | 01. | 1 | 2 | 3 | 4 | 5 | 02. | 1 2 | 3 | 4 | 5 | 03. | 1 | 2 | 3 | 4 | 5 | | | | 04. | 1 | 2 | 3 | 4 | 5 | 05. | 1 2 | 3 | 4 | 5 | 06. | 1 | 2 | 3 | 4 | 5 | | | | 07. | 1 | 2 | 3 | 4 | 5 | 08. | 1 2 | 3 | 4 | 5 | 09. | 1 | 2 | 3 | 4 | 5 | | , i | | 10. | 1 | 2 | 3 | 4 | 5 | 11. | 1 2 | 3 | 4 | 5 | 12. | 1 | 2 | 3 | 4 | 5 | | | | 13. | 1 | 2 | 3 | 4 | 5 | 14. | 1 2 | 3 | 4 | 5 | 15. | 1 | 2 | 3 | 4 | 5 | | | | 16. | 1 | 2 | 3 | 4 | 5 | 17. | 1 2 | 3 | 4 | 5 | 18. | 1 | 2 | 3 | 4 | 5 | | | | 19. | 1 | 2 | 3 | 4 | 5 | 20. | 1 2 | 3 | 4 | 5 | 21. | 1 | 2 | 3 | 4 | 5 | : | | | 22. | 1 | 2 | 3 | 4 | 5 | 23. | 1 2 | 3 | 4 | 5 | 24. | 1 | 2 | 3 | 4 | 5 | | | | 25. | 1 | 2 | 3 | 4 | 5 | | | | | | | | | | | | | | ## B.Sc. Degree Program 2013/2014 CMU2122/CME4122 – Inorganic Chemistry - Level 4 Answers for the Assignment Test-I held on 02-03-2014 | 1. (2) | 2. (5) | 3. (4) | 4. (3) | 5. (4) | |----------------|----------------|---------------|----------------|----------------| | 6. (1) | 7. (2) | 8. (1) | 9. (5) | 10. (4) | | 11. (5) | 12. (1) | 13. (2) | 14. (3) | 15. (3) | | 16. (4) | 17. (3) | 18. (2) | 19. (2) | 20. (4) | | 21. (3) | 22. (3) | 23. (2) | 24. (3) | 25 (2) |