THE OPEN UNIVERSITY OF SRI LANKA B.Sc/B.Ed DEGREE PROGRAMME - 2013/2014 Level 4 - CMU2122/CME4122 INORGANIC CHEMISTRY ASSIGNMENT TEST II (NBT) | 11 th April 2014 (Frida | ay) | | 10.30 – 11.30 a.m. | | | | | | |--|---|--|--|--|--|--|--|--| | Abstition transition in an animal and assessment and the second states as a state as a second states as a second state seco | Avogadro const | ant, $L = 6$ | $.023 \times 10^{23} \text{ mol}^{-1}$ | er en versiellen, den der Beit der Stepten der Artificierten der der proprieten versien der just 1970 der bei de | | | | | | | Planck's constan | nt, h = 6 | $1.63 \times 10^{-34} \mathrm{J \ s}^{-3}$ | | | | | | | | · Velocity of ligh | t, c = 3 | $x 10^8 \text{ m s}^{-1}$ | | | | | | | | Mass of an elec- | tron = 0 | .0005 a.m.u | · | | | | | | | Mass of a proto | n = 1 | .0073 a.m.u. | | | | | | | | Mass of a neutro | on = 1 | .0089 a.m.u. | | | | | | | | 1 a.m.u. | = 1 | .661 x 10 ⁻²⁷ kg | | | | | | | | 1 MeV | = 1 | $.6021 \times 10^{-13} \mathrm{J}$ | | | | | | | 1. For a part of the dec | cay series given be | elow, which | of the following st | atements are true? | | | | | | $_{92}^{235}U \xrightarrow{-\alpha} X$ | $\xrightarrow{-x}$ $\stackrel{251}{91}Pa$ $\stackrel{-}{\longrightarrow}$ | $\stackrel{\alpha}{\longrightarrow} Y \stackrel{-}{\longrightarrow}$ | $\xrightarrow{9}$ $\xrightarrow{227}$ $\xrightarrow{90}$ $\xrightarrow{1}$ $\xrightarrow{1}$ | $\longrightarrow \longrightarrow \stackrel{207}{82}Pb$ | | | | | | (a) It is the (4n+1) | decay series | (b) X is $^{231}_{90}$ | Th (c) Y is $^{227}_{89}A$ | $dc (d) x is \beta^+$ | | | | | | 1) (a) and (b) | The answer is 1) (a) and (b) only 2 4) (a) and (d) only 5 | | | 3) (c) and (d) only | | | | | | minute (dpm). If a p | piece of charcoal f | rom a prehis | toric site is found | 15.3 disintegrations per to emit 1.53 β particles per of <i>carbon-14</i> is 5730 y). | | | | | | 1) 1,904 | 2) 3,808 | 3) 9,521 | 4) 19,042 | 5) 38,084 | | | | | | 3. The activity of 1 m | g of pure <i>radium</i> - | $226 (t_{1/2} = 16)$ | 00 y) in Becquere | l (Bq) is | | | | | | 1) 3.7x10 ¹⁰ | 2) 3.7x10 ⁴ | 3) 3.7x10 ⁷ | 4) 3.7x10 ¹² | 5) 3.7x10 ³ | | | | | | 4. Two of the following (a) ${}_{6}^{11}C$ | _ | _ | be unstable and results (d) $^{12}_{6}C$ | adioactive. | | | | | | The answer is 1) (a) and (b) only 4) (a) and (d) only | | 2) (b) and (5) (a), (b) a | | 3) (c) and (d) only | | | | | | (a) electron emiss | ion | (b) positron emission | (c) | (c) electron capture | | | |--|---|--|--|--|--|--| | The answer is | | 2) (b) only
5) (b) and (c) only | 3) (c) only | | | | | 6. What will be the p | product for | ned when $\frac{22}{9}F$ undergo | oes β decay? | | | | | 1) ${}_{9}^{21}F$ | 2) $^{22}_{8}O$ | 3) ${}_{9}^{22}F$ | 4) ²¹ ₈ O | 5) 22 Ne | | | | 7. Identify X in the 1 | nuclear reac | ction given by the notat | ion, $X(n, p)_{16}^{35}$ | S | | | | 1) ³⁶ ₁₇ Cl | 2) $_{16}^{36}S$ | 3) ³⁵ ₁₇ Cl | 4) ³⁷ Cl | 5) ³⁴ ₁₆ S | | | | 8. Identify the type of ${}_{6}^{11}C \rightarrow {}_{5}^{11}B + ?$ | of nuclear re | eaction: | | | | | | 1) α- decay
4) electron ca | pture | 2) electron emission5) γ emission | 3) positron (| emission | | | | Questions 9-10 are | based on the | e nuclear reaction, $^{235}_{92}U$ | $7 + {}^{1}_{0}n \rightarrow {}^{140}_{54}$ | $Xe + \frac{94}{38}Sr + x \frac{1}{0}n$ | | | | 9. The value of x is | | | 0 51 | 30 0 | | | | | | | | | | | | 1) 1 | 2) 2 | 3) 3 | 4) 4 | 5) 5 | | | | 1) 1 | lowing state | ements is/are accurate of the sion (b) It | lescription(s) o
is a nuclear fis | of this nuclear react | | | | 1) 1 10. Which of the fol (a) It is called ne (c) It is a chain r The answer is | lowing state
outron emiss
eaction | ements is/are accurate of the sion (b) It | description(s) c
is a nuclear fis
is called neutro
3) (| of this nuclear react | | | | 1) 1 10. Which of the fol (a) It is called ne (c) It is a chain r The answer is 1)(a) and (b) on | lowing state
cutron emiss
eaction
ly | ements is/are accurate of
sion (b) It
(d) It
2) (b) and (c) only
5) (a), (b) and (c) only | description(s) c
is a nuclear fis
is called neutro
3) (| of this nuclear react
sion
on bombardment | | | | 1) 1 10. Which of the fol (a) It is called no (c) It is a chain r The answer is 1)(a) and (b) on 4) (a) and (d) on 11. How does 40/19 K d | lowing state
cutron emiss
eaction
ly
ly
lecay to ⁴⁰ ₂₀ C
mission | ements is/are accurate of sion (b) It (d) It 2) (b) and (c) only 5) (a), (b) and (c) only a? 2) By electron capture | description(s) c
is a nuclear fis
is called neutro
3) (| of this nuclear react
sion
on bombardment | | | | 1) 1 10. Which of the fol (a) It is called no (c) It is a chain r The answer is 1) (a) and (b) on 4) (a) and (d) on 11. How does ⁴⁰ / ₁₉ K d 1) By positron en 4) By neutron er 12. Another mode o | lowing state cutron emission ly elecay to $^{40}_{20}C$ mission mission f decay by | ements is/are accurate of sion (b) It (d) It 2) (b) and (c) only 5) (a), (b) and (c) only a? 2) By electron capture | description(s) cois a nuclear fisis called neutron (s) | of this nuclear reactision on bombardment c) and (d) only By electron emission | | | | 1) 1 10. Which of the fol (a) It is called no (c) It is a chain r The answer is 1)(a) and (b) on 4) (a) and (d) on 1 11. How does ⁴⁰ / ₁₉ K d 1) By positron en 4) By neutron en 12. Another mode on a decay process? | lowing state cutron emission ly lecay to 40 Comission mission f decay by | ements is/are accurate of sion (b) It (d) It 2) (b) and (c) only 5) (a), (b) and (c) only (a? 2) By electron capture 5) By α-decay | description(s) of is a nuclear fistic called neutron (s) | of this nuclear reactivision on bombardment c) and (d) only by electron emission like the product of | | | | 1) 1 10. Which of the fol (a) It is called no (c) It is a chain r The answer is 1)(a) and (b) on 4) (a) and (d) on 1 11. How does ⁴⁰ / ₁₉ K d 1) By positron en 4) By neutron en 1 12. Another mode on a decay process and continuous forms of the following fol | lowing state cutron emission ly elecay to $^{40}_{20}C$ mission mission f decay by 2) $^{41}_{19}K$ | ements is/are accurate of sion (b) It (d) It 2) (b) and (c) only 5) (a), (b) and (c) only (a? 2) By electron capture 5) By α-decay | description(s) of is a nuclear fistic called neutron (s) | of this nuclear reactivision on bombardment on bombardment or and (d) only by electron emission of $\frac{40}{18}$ Ar | | | | 1) 1 10. Which of the fol (a) It is called no (c) It is a chain r The answer is 1) (a) and (b) on 4) (a) and (d) on 11. How does ⁴⁰ / ₁₉ K of 1) By positron end (b) By neutron end (c) a decay process of 1) ⁴⁰ / ₁₉ K | lowing state cutron emission ly elecay to $^{40}_{20}C$ mission mission f decay by 2) $^{41}_{19}K$ ased (MeV) | ements is/are accurate of sion (b) It (d) It 2) (b) and (c) only 5) (a), (b) and (c) only (a? 2) By electron capture 5) By α-decay 40 K is by positron emis 3) 40 Ca | description(s) of is a nuclear fistic called neutron (s) of the called neutron (s) | of this nuclear reactivision on bombardment on bombardment c) and (d) only By electron emission of the product of $a_{18}^{40}Ar$ $a_{18}^{40}Ar$ $a_{18}^{40}Ar$ | | | Use the following figure, which shows four possible configurations, α , β , γ and δ , of a CH₃Cl molecule, in answering the questions 14, 15, 16 and 17. - 14. Consider the following four statements about the configurations shown in the figure above. - (i) Configurations α and β are equivalent. - (ii) Configurations α and γ are equivalent. - (iii) Configurations β and δ are equivalent. - (iv) Configurations γ and δ are equivalent. The correct statements, out of (i), (ii), (iii) and (iv) above, are - 1) Only (i) and (ii). - 2) Only (i) and (iii). - 3) Only (ii) and (iii). - 4) Only (i) and (iv) - 5) All (i), (ii), (iii) and (iv) - 15. Consider the following statements about the configurations shown in the figure above. - (i) Configuration β can be obtained by a reflection operation performed on the configuration α which is <u>not</u> a symmetry operation of the molecule. - (ii) Configuration γ can be obtained by a reflection operation performed on the configuration α which is a symmetry operation of the molecule. - (iii) Configuration δ can be obtained by a rotation operation performed on the configuration γ which is <u>not</u> a symmetry operation of the molecule. The correct statements, out of (i), (ii) and (iii) above, are - 1) Only (i) and (ii). - 2) Only (i) and (iii). - 3) Only (ii) and (iii). - 4) All (i), (ii) and (iii). - 5) None of the answers, 1), 2), 3) or 4) is correct. - 16. Consider the following statements about the configurations shown in the figure above. - (i) Rotation of the molecule in configuration α by 360° about an axis passing through any of the three CH bonds is an identity operation. - (ii) Rotation of the molecule in configuration β by 360° about the axis passing through CCl bond is an identity operation. - (iii) Reflection of the molecule in configuration γ once through the plane passing through the CCl bond and any H nucleus is an identity operation. The correct statements, out of (i), (ii) and (iii) above, are - 1) Only (i) and (ii). - 2) Only (i) and (iii). - 3) Only (ii) and (iii). - 4) All (i), (ii) and (iii). - 5) None of the <u>answers</u>, 1), 2), 3) or 4) is correct. - 17. Consider the following statements about the configurations shown in the figure above. - The axis passing through the CCl bond in configuration α is a rotational axis of symmetry of the molecule. - (ii) The axis passing through any of the CH bonds in configuration β is a rotational axis of symmetry of the molecule. - (iii) The axis passing through the CCI bond in configuration δ is a rotational axis of symmetry of the molecule of order 3. The correct statements, out of (i), (ii) and (iii) above, are - Only (i) and (ii). - 2) Only (i) and (iii). - 3) Only (ii) and (iii). - All (i), (ii) and (iii). - 5) None of the answers, 1), 2), 3) or 4) is correct. - 18. In standard notation, which of the following represent the total set of distinct symmetry operations that can be performed about the axis passing through the S nucleus and two F nuclei in SF₆ shown in the figure to the right by a dashed line. 1) $$\{E, C_6, C_6^2, C_6^3, C_6^4, C_6^5\}$$ 2) $\{E, C_4, C_4^7, C_4^5\}$ 2) $$\{E, C_4, C_4^7, C_4^5\}$$ $$3)$$ {E, C₄, C₄, C₄⁸ } 3) $$\left\{ E, C_4, C_4^7, C_4^8 \right\}$$ 4) $\left\{ E, C_6, C^3, C_6^4, C_6^{11}, C_6^8 \right\}$ $$5) \Big\{ E, C_4, C_4^3, C_4^6 \Big\}$$ 19. Consider the following statements about the aromatic planar molecule, C_8H_8 , shown in the figure to the right. - (i) It has 8 (eight) C_2 axes on the plane of the molecule. - (ii) The principal axis is perpendicular to the plane of the molecule and is of order 4 (four). - (iii) The plane of the molecule is a horizontal plane of symmetry (σ_h) . The correct statements, out of (i), (ii) and (iii) above, are - 1) Only (i) and (ii). - 2) Only (i) and (iii). - 3) Only (ii) and (iii). - All (i), (ii) and (iii). - None of the answers, 1), 2), 3) or 4) is correct. 5) - 20. Consider the following statements about ethane in neither staggered nor eclipsed conformation, the Newmann projection formula of which is shown in the figure to the right. - (i) C-C bond axis is a symmetry axis of rotation of order 3. - (ii) It has no planes of symmetry. - (iii) C-C bond axis is the principal axis of the molecule in this configuration. The correct statements, out of (i), (ii) and (iii) above, are - 1) Only (i) and (ii). - 2) Only (i) and (iii). - 3) Only (ii) and (iii). - All (i), (ii) and (iii). 4) - None of the answers, 1), 2), 3) or 4) is correct. - 21. Consider the following statements. - (i) A molecule <u>cannot</u> have another axis of rotation which has the same order as that of its principal axis. - (ii) A molecule <u>cannot</u> have another axis of rotation which has an order higher than that of its principal axis. - (iii) A molecule of benzene has only one principal axis. The correct statements, out of (i), (ii) and (iii) above, are - 1) Only (i) and (ii). - 2) Only (i) and (iii). - 3) Only (ii) and (iii). - 4) All (i), (ii) and (iii). - 5) None of the answers, 1), 2), 3) or 4) is correct. - 22. Consider the molecule, AX_3Y_2 , which has a trigonal bipyramidal structure as shown in the figure to the right. Consider the following statements. - (i) YAY axis is the principal axis of symmetry of the molecule. - (ii) The plane passing through YAY and any X nucleus is a dihedral plane. - (iii) The molecule has a centre of inversion. The correct statements, out of (i), (ii) and (iii) above, are - 1) Only (i) and (ii). - 2) Only (i) and (iii). - 3) Only (ii) and (iii). - 4) All (i), (ii) and (iii). 5) None of the answer - 5) None of the answers, 1), 2), 3) or 4) is correct. - 23. Which of the following molecules have a centre of inversion? - (i) C_2H_2 - (ii) Ethane in eclipsed configuration - (iii) cis-CHCl = CHCl - (iv) trans-CHCl = CHCl - 1) Only (i) and (ii). - 2) Only (i) and (iii). - 3) Only (ii) and (iv). - 4) Only (i), (ii) and (iv). - 5) Only (i) and (iv). - 24. Following figure shows 3 configurations, α , β and γ , of staggered ethane. Consider the following statements about the above configurations. (i) S_6^{10} operation about the C-C bind axis performed on configuration α gives configuration β . - (ii) S_6^2 operation about the C-C bind axis performed on configuration α gives configuration γ . - (iii) S_6^3 operation about the C-C bind axis performed on configuration γ gives configuration β . The correct statements, out of (i), (ii) and (iii) above, are - 1) Only (i) and (ii). - 2) Only (i) and (iii). - 3) Only (ii) and (ii - 4) All (i), (ii) and (iii). - 5) None of the answers, 1), 2), 3) or 4) is correct. - 25. Consider the following statements. - (i) Always there are only 5 distinct symmetry operations about an S_5 axis. - (ii) Always there is a C_5 coincident with an S_5 axis. - (iii) Always there is a symmetry plane perpendicular to an S_5 axis. The correct statements, out of (i), (ii) and (iii) above, are - 1) Only (i) and (ii). - 2) Only (i) and (iii). - 3) Only (ii) and (iii). - 4) All (i), (ii) and (iii). - 5) None of the answers, 1), 2), 3) or 4) is correct. ## THE OPEN UNIVERSITY OF SRI LANKA B. Sc DEGREE PROGRAMME 2013/2014 CMU2122/CME4122 – INORGANIC CHEMISTRY- LEVEL 4 ASSIGNMENT TEST-II MCQ ANSWER SHEET: Mark a cross (X) over the most suitable answer. | | _ | | | | | | | ` , | | | | | | | | | Mar | ζS | | |------|-----|---|---|---|----|---------|--------|-------------|------|-------------|-------|---|---|---|------|---|-----|----|----| | Reg. | No. | | | | | | I | for | Exaπ | iner | s Use | | | | Tota | | | | | | | | | | | | | | | | | Marks | S | | | | | | | | | | | | | | Co | rrect A | nswers | _ | | | | | | | | | | | | | | | | | | WI | ong Ans | wers | _ | | | | | | | | | | | | | | | | | | Tc | tal | • | | | | | | | | | | | ٠. | | 01. | 1 | 2 | 3 | 4 | 5 | 02. | 1 2 | 3 | 4 | 5 | 03. | 1 | 2 | 3 | 4 | 5 | | | | | 04. | 1 | 2 | 3 | 4 | 5 | 05. | 1 2 | 3 | 4 | 5 | 06. | 1 | 2 | 3 | 4 | 5 | | | | | 07. | 1 | 2 | 3 | 4 | 5 | 08. | 1 2 | 3 | 4 | 5 | 09. | 1 | 2 | 3 | 4 | 5 | | | | | 10. | 1 | 2 | 3 | 4 | 5 | 11. | 1 2 | 3 | 4 | 5 | 12. | 1 | 2 | 3 | 4 | 5 | | | | | 13. | 1 | 2 | 3 | 4 | 5 | 14. | 1 2 | 3 | 4 | 5 | 15. | 1 | 2 | 3 | 4 | 5 | | | | | 16. | 1 | 2 | 3 | 4 | 5 | 17. | 1 2 | 3 | 4 | 5 | 18. | 1 | 2 | 3 | 4 | 5 | | | | | 19. | 1 | 2 | 3 | 4 | 5 | 20. | 1 2 | 3 | 4 | 5 | 21. | 1 | 2 | 3 | 4 | 5 | | | | | 22. | 1 | 2 | 3 | 4 | 5 | 23. | 1 2 | 3 | 4 | 5 | 24. | 1 | 2 | 3 | 4 | 5 | | | | | 25. | 1 | 2 | 3 | 4 | 5 | | | | | | | | | | | | | | | ## Answer Guide for CAT-II-2013/2014 CMU2122/CME4122 – Inorganic Chemistry held on 11-04-2014 ## MCQ ANSWERS | 1. (2) | 2. (4) | 3. (3) | 4. (1) | 5. (5) | |----------------|----------------|----------------|----------------|----------------| | 6. (5) | 7. (3) | 8. (3) | 9. (2) | 10. (2) | | 11. (3) | 12. (5) | 13. (1) | 14. (3) | 15. (4) | | 16. (1) | 17. (2) | 18. (5) | 19. (2) | 20. (4) | | 21. (3) | 22. (1) | 23. (5) | 24. (2) | 25. (3) |