

THE OPEN UNIVERSITY OF SRI LANKA B.Sc/B.Ed DEGREE PROGRAMME - 2013/2014 Level 4 - CMU2122/CME4122 INORGANIC CHEMISTRY ASSIGNMENT TEST II (NBT)

11 th April 2014 (Frida	ay)		10.30 – 11.30 a.m.					
Abstition transition in an animal and assessment and the second states as a second state as a second states as a second state as a seco	Avogadro const	ant, $L = 6$	$.023 \times 10^{23} \text{ mol}^{-1}$	er en versiellen, den der Beit der Stepten der Artificierten der der proprieten versien der just 1970 der bei de				
	Planck's constan	nt, h = 6	$1.63 \times 10^{-34} \mathrm{J \ s}^{-3}$					
	· Velocity of ligh	t, c = 3	$x 10^8 \text{ m s}^{-1}$					
	Mass of an elec-	tron = 0	.0005 a.m.u	·				
	Mass of a proto	n = 1	.0073 a.m.u.					
	Mass of a neutro	on = 1	.0089 a.m.u.					
	1 a.m.u.	= 1	.661 x 10 ⁻²⁷ kg					
	1 MeV	= 1	$.6021 \times 10^{-13} \mathrm{J}$					
1. For a part of the dec	cay series given be	elow, which	of the following st	atements are true?				
$_{92}^{235}U \xrightarrow{-\alpha} X$	$\xrightarrow{-x}$ $\stackrel{251}{91}Pa$ $\stackrel{-}{\longrightarrow}$	$\stackrel{\alpha}{\longrightarrow} Y \stackrel{-}{\longrightarrow}$	$\xrightarrow{9}$ $\xrightarrow{227}$ $\xrightarrow{90}$ $\xrightarrow{1}$ $\xrightarrow{1}$	$\longrightarrow \longrightarrow \stackrel{207}{82}Pb$				
(a) It is the (4n+1)	decay series	(b) X is $^{231}_{90}$	Th (c) Y is $^{227}_{89}A$	$dc (d) x is \beta^+$				
1) (a) and (b)	The answer is 1) (a) and (b) only 2 4) (a) and (d) only 5			3) (c) and (d) only				
minute (dpm). If a p	piece of charcoal f	rom a prehis	toric site is found	15.3 disintegrations per to emit 1.53 β particles per of <i>carbon-14</i> is 5730 y).				
1) 1,904	2) 3,808	3) 9,521	4) 19,042	5) 38,084				
3. The activity of 1 m	g of pure <i>radium</i> -	$226 (t_{1/2} = 16)$	00 y) in Becquere	l (Bq) is				
1) 3.7x10 ¹⁰	2) 3.7x10 ⁴	3) 3.7x10 ⁷	4) 3.7x10 ¹²	5) 3.7x10 ³				
4. Two of the following (a) ${}_{6}^{11}C$	_	_	be unstable and results (d) $^{12}_{6}C$	adioactive.				
The answer is 1) (a) and (b) only 4) (a) and (d) only		2) (b) and (5) (a), (b) a		3) (c) and (d) only				

(a) electron emiss	ion	(b) positron emission	(c)	(c) electron capture		
The answer is		2) (b) only 5) (b) and (c) only	3) (c) only			
6. What will be the p	product for	ned when $\frac{22}{9}F$ undergo	oes β decay?			
1) ${}_{9}^{21}F$	2) $^{22}_{8}O$	3) ${}_{9}^{22}F$	4) ²¹ ₈ O	5) 22 Ne		
7. Identify X in the 1	nuclear reac	ction given by the notat	ion, $X(n, p)_{16}^{35}$	S		
1) ³⁶ ₁₇ Cl	2) $_{16}^{36}S$	3) ³⁵ ₁₇ Cl	4) ³⁷ Cl	5) ³⁴ ₁₆ S		
8. Identify the type of ${}_{6}^{11}C \rightarrow {}_{5}^{11}B + ?$	of nuclear re	eaction:				
1) α- decay 4) electron ca	pture	2) electron emission5) γ emission	3) positron (emission		
Questions 9-10 are	based on the	e nuclear reaction, $^{235}_{92}U$	$7 + {}^{1}_{0}n \rightarrow {}^{140}_{54}$	$Xe + \frac{94}{38}Sr + x \frac{1}{0}n$		
9. The value of x is			0 51	30 0		
1) 1	2) 2	3) 3	4) 4	5) 5		
1) 1	lowing state	ements is/are accurate of the sion (b) It	lescription(s) o is a nuclear fis	of this nuclear react		
 1) 1 10. Which of the fol (a) It is called ne (c) It is a chain r The answer is 	lowing state outron emiss eaction	ements is/are accurate of the sion (b) It	description(s) c is a nuclear fis is called neutro 3) (of this nuclear react		
1) 1 10. Which of the fol (a) It is called ne (c) It is a chain r The answer is 1)(a) and (b) on	lowing state cutron emiss eaction ly	ements is/are accurate of sion (b) It (d) It 2) (b) and (c) only 5) (a), (b) and (c) only	description(s) c is a nuclear fis is called neutro 3) (of this nuclear react sion on bombardment		
1) 1 10. Which of the fol (a) It is called no (c) It is a chain r The answer is 1)(a) and (b) on 4) (a) and (d) on 11. How does 40/19 K d	lowing state cutron emiss eaction ly ly lecay to ⁴⁰ ₂₀ C mission	ements is/are accurate of sion (b) It (d) It 2) (b) and (c) only 5) (a), (b) and (c) only a? 2) By electron capture	description(s) c is a nuclear fis is called neutro 3) (of this nuclear react sion on bombardment		
1) 1 10. Which of the fol (a) It is called no (c) It is a chain r The answer is 1) (a) and (b) on 4) (a) and (d) on 11. How does ⁴⁰ / ₁₉ K d 1) By positron en 4) By neutron er 12. Another mode o	lowing state cutron emission ly elecay to $^{40}_{20}C$ mission mission f decay by	ements is/are accurate of sion (b) It (d) It 2) (b) and (c) only 5) (a), (b) and (c) only a? 2) By electron capture	description(s) cois a nuclear fisis called neutron (s)	of this nuclear reactision on bombardment c) and (d) only By electron emission		
1) 1 10. Which of the fol (a) It is called no (c) It is a chain r The answer is 1)(a) and (b) on 4) (a) and (d) on 1 11. How does ⁴⁰ / ₁₉ K d 1) By positron en 4) By neutron en 12. Another mode on a decay process?	lowing state cutron emission ly lecay to 40 Comission mission f decay by	ements is/are accurate of sion (b) It (d) It 2) (b) and (c) only 5) (a), (b) and (c) only (a? 2) By electron capture 5) By α-decay	description(s) of is a nuclear fistic called neutron (s)	of this nuclear reactivision on bombardment c) and (d) only by electron emission like the product of		
1) 1 10. Which of the fol (a) It is called no (c) It is a chain r The answer is 1)(a) and (b) on 4) (a) and (d) on 1 11. How does ⁴⁰ / ₁₉ K d 1) By positron en 4) By neutron en 1 12. Another mode on a decay process and continuous forms of the following forms of the fol	lowing state cutron emission ly elecay to $^{40}_{20}C$ mission mission f decay by 2) $^{41}_{19}K$	ements is/are accurate of sion (b) It (d) It 2) (b) and (c) only 5) (a), (b) and (c) only (a? 2) By electron capture 5) By α-decay	description(s) of is a nuclear fistic called neutron (s)	of this nuclear reactivision on bombardment on bombardment or and (d) only by electron emission of $\frac{40}{18}$ Ar		
1) 1 10. Which of the fol (a) It is called no (c) It is a chain r The answer is 1) (a) and (b) on 4) (a) and (d) on 11. How does ⁴⁰ / ₁₉ K of 1) By positron end (b) By neutron end (c) a decay process of 1) ⁴⁰ / ₁₉ K	lowing state cutron emission ly elecay to $^{40}_{20}C$ mission mission f decay by 2) $^{41}_{19}K$ ased (MeV)	ements is/are accurate of sion (b) It (d) It 2) (b) and (c) only 5) (a), (b) and (c) only (a? 2) By electron capture 5) By α-decay 40 K is by positron emis 3) 40 Ca	description(s) of is a nuclear fistic called neutron (s) of the called neutron (s)	of this nuclear reactivision on bombardment on bombardment c) and (d) only By electron emission of the product of $a_{18}^{40}Ar$ $a_{18}^{40}Ar$ $a_{18}^{40}Ar$		

Use the following figure, which shows four possible configurations, α , β , γ and δ , of a CH₃Cl molecule, in answering the questions 14, 15, 16 and 17.

- 14. Consider the following four statements about the configurations shown in the figure above.
 - (i) Configurations α and β are equivalent.
 - (ii) Configurations α and γ are equivalent.
 - (iii) Configurations β and δ are equivalent.
 - (iv) Configurations γ and δ are equivalent.

The correct statements, out of (i), (ii), (iii) and (iv) above, are

- 1) Only (i) and (ii).
- 2) Only (i) and (iii).
- 3) Only (ii) and (iii).

- 4) Only (i) and (iv)
- 5) All (i), (ii), (iii) and (iv)
- 15. Consider the following statements about the configurations shown in the figure above.
 - (i) Configuration β can be obtained by a reflection operation performed on the configuration α which is <u>not</u> a symmetry operation of the molecule.
 - (ii) Configuration γ can be obtained by a reflection operation performed on the configuration α which is a symmetry operation of the molecule.
 - (iii) Configuration δ can be obtained by a rotation operation performed on the configuration γ which is <u>not</u> a symmetry operation of the molecule.

The correct statements, out of (i), (ii) and (iii) above, are

- 1) Only (i) and (ii).
- 2) Only (i) and (iii).
- 3) Only (ii) and (iii).

- 4) All (i), (ii) and (iii).
- 5) None of the answers, 1), 2), 3) or 4) is correct.
- 16. Consider the following statements about the configurations shown in the figure above.
 - (i) Rotation of the molecule in configuration α by 360° about an axis passing through any of the three CH bonds is an identity operation.
 - (ii) Rotation of the molecule in configuration β by 360° about the axis passing through CCl bond is an identity operation.
 - (iii) Reflection of the molecule in configuration γ once through the plane passing through the CCl bond and any H nucleus is an identity operation.

The correct statements, out of (i), (ii) and (iii) above, are

- 1) Only (i) and (ii).
- 2) Only (i) and (iii).
- 3) Only (ii) and (iii).

- 4) All (i), (ii) and (iii).
- 5) None of the <u>answers</u>, 1), 2), 3) or 4) is correct.

- 17. Consider the following statements about the configurations shown in the figure above.
- The axis passing through the CCl bond in configuration α is a rotational axis of symmetry of the molecule.
- (ii) The axis passing through any of the CH bonds in configuration β is a rotational axis of symmetry of the molecule.
- (iii) The axis passing through the CCI bond in configuration δ is a rotational axis of symmetry of the molecule of order 3.

The correct statements, out of (i), (ii) and (iii) above, are

- Only (i) and (ii).
- 2) Only (i) and (iii).
- 3) Only (ii) and (iii).

- All (i), (ii) and (iii).
- 5) None of the answers, 1), 2), 3) or 4) is correct.
- 18. In standard notation, which of the following represent the total set of distinct symmetry operations that can be performed about the axis passing through the S nucleus and two F nuclei in SF₆ shown in the figure to the right by a dashed line.

1)
$$\{E, C_6, C_6^2, C_6^3, C_6^4, C_6^5\}$$
 2) $\{E, C_4, C_4^7, C_4^5\}$

2)
$$\{E, C_4, C_4^7, C_4^5\}$$

$$3)$$
 {E, C₄, C₄, C₄⁸ }

3)
$$\left\{ E, C_4, C_4^7, C_4^8 \right\}$$
 4) $\left\{ E, C_6, C^3, C_6^4, C_6^{11}, C_6^8 \right\}$

$$5) \Big\{ E, C_4, C_4^3, C_4^6 \Big\}$$

19. Consider the following statements about the aromatic planar molecule, C_8H_8 , shown in the figure to the right.

- (i) It has 8 (eight) C_2 axes on the plane of the molecule.
- (ii) The principal axis is perpendicular to the plane of the molecule and is of order 4 (four).
- (iii) The plane of the molecule is a horizontal plane of symmetry (σ_h) .

The correct statements, out of (i), (ii) and (iii) above, are

- 1) Only (i) and (ii).
- 2) Only (i) and (iii).
- 3) Only (ii) and (iii).

- All (i), (ii) and (iii).
- None of the answers, 1), 2), 3) or 4) is correct. 5)
- 20. Consider the following statements about ethane in neither staggered nor eclipsed conformation, the Newmann projection formula of which is shown in the figure to the right.

- (i) C-C bond axis is a symmetry axis of rotation of order 3.
- (ii) It has no planes of symmetry.
- (iii) C-C bond axis is the principal axis of the molecule in this configuration.

The correct statements, out of (i), (ii) and (iii) above, are

- 1) Only (i) and (ii).
- 2) Only (i) and (iii).
- 3) Only (ii) and (iii).

- All (i), (ii) and (iii). 4)
- None of the answers, 1), 2), 3) or 4) is correct.

- 21. Consider the following statements.
 - (i) A molecule <u>cannot</u> have another axis of rotation which has the same order as that of its principal axis.
 - (ii) A molecule <u>cannot</u> have another axis of rotation which has an order higher than that of its principal axis.
 - (iii) A molecule of benzene has only one principal axis.

The correct statements, out of (i), (ii) and (iii) above, are

- 1) Only (i) and (ii).
- 2) Only (i) and (iii).
- 3) Only (ii) and (iii).

- 4) All (i), (ii) and (iii).
- 5) None of the answers, 1), 2), 3) or 4) is correct.
- 22. Consider the molecule, AX_3Y_2 , which has a trigonal bipyramidal structure as shown in the figure to the right. Consider the following statements.
 - (i) YAY axis is the principal axis of symmetry of the molecule.
 - (ii) The plane passing through YAY and any X nucleus is a dihedral plane.
 - (iii) The molecule has a centre of inversion.

The correct statements, out of (i), (ii) and (iii) above, are

- 1) Only (i) and (ii).
- 2) Only (i) and (iii).
- 3) Only (ii) and (iii).
- 4) All (i), (ii) and (iii). 5) None of the answer
- 5) None of the answers, 1), 2), 3) or 4) is correct.
- 23. Which of the following molecules have a centre of inversion?
 - (i) C_2H_2
- (ii) Ethane in eclipsed configuration
- (iii) cis-CHCl = CHCl

- (iv) trans-CHCl = CHCl
- 1) Only (i) and (ii).
- 2) Only (i) and (iii).
- 3) Only (ii) and (iv).

- 4) Only (i), (ii) and (iv).
- 5) Only (i) and (iv).
- 24. Following figure shows 3 configurations, α , β and γ , of staggered ethane.

Consider the following statements about the above configurations.

(i) S_6^{10} operation about the C-C bind axis performed on configuration α gives configuration β .

- (ii) S_6^2 operation about the C-C bind axis performed on configuration α gives configuration γ .
- (iii) S_6^3 operation about the C-C bind axis performed on configuration γ gives configuration β .

The correct statements, out of (i), (ii) and (iii) above, are

- 1) Only (i) and (ii).
- 2) Only (i) and (iii).
- 3) Only (ii) and (ii

- 4) All (i), (ii) and (iii).
- 5) None of the answers, 1), 2), 3) or 4) is correct.
- 25. Consider the following statements.
 - (i) Always there are only 5 distinct symmetry operations about an S_5 axis.
 - (ii) Always there is a C_5 coincident with an S_5 axis.
 - (iii) Always there is a symmetry plane perpendicular to an S_5 axis.

The correct statements, out of (i), (ii) and (iii) above, are

- 1) Only (i) and (ii).
- 2) Only (i) and (iii).
 - 3) Only (ii) and (iii).

- 4) All (i), (ii) and (iii).
- 5) None of the answers, 1), 2), 3) or 4) is correct.

THE OPEN UNIVERSITY OF SRI LANKA B. Sc DEGREE PROGRAMME 2013/2014 CMU2122/CME4122 – INORGANIC CHEMISTRY- LEVEL 4 ASSIGNMENT TEST-II

MCQ ANSWER SHEET: Mark a cross (X) over the most suitable answer.

	_							` ,									Mar	ζS	
Reg.	No.						I	for	Exaπ	iner	s Use				Tota				
											Marks	S							
					Co	rrect A	nswers	_											
					WI	ong Ans	wers	_											
					Tc	tal													
								•											٠.
01.	1	2	3	4	5	02.	1 2	3	4	5	03.	1	2	3	4	5			
04.	1	2	3	4	5	05.	1 2	3	4	5	06.	1	2	3	4	5			
07.	1	2	3	4	5	08.	1 2	3	4	5	09.	1	2	3	4	5			
10.	1	2	3	4	5	11.	1 2	3	4	5	12.	1	2	3	4	5			
13.	1	2	3	4	5	14.	1 2	3	4	5	15.	1	2	3	4	5			
16.	1	2	3	4	5	17.	1 2	3	4	5	18.	1	2	3	4	5			
19.	1	2	3	4	5	20.	1 2	3	4	5	21.	1	2	3	4	5			
22.	1	2	3	4	5	23.	1 2	3	4	5	24.	1	2	3	4	5			
25.	1	2	3	4	5														

Answer Guide for CAT-II-2013/2014 CMU2122/CME4122 – Inorganic Chemistry held on 11-04-2014

MCQ ANSWERS

1. (2)	2. (4)	3. (3)	4. (1)	5. (5)
6. (5)	7. (3)	8. (3)	9. (2)	10. (2)
11. (3)	12. (5)	13. (1)	14. (3)	15. (4)
16. (1)	17. (2)	18. (5)	19. (2)	20. (4)
21. (3)	22. (1)	23. (5)	24. (2)	25. (3)