THE OPEN UNIVERSITY OF SRI LANKA

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

B. SC. DEGREE PROGRAMME 2013/2014

CPU3141: DIGITAL COMPUTER FUNDAMENTALS

DURATION: TWO HOURS (2 HOURS)

Date: 12.11.2014

Time: 1.30 pm - 3.30 pm

Answer FOUR Questions ONLY.

Q1.

- (i) What is the number system used in digital computers? Give two reasons why the particular system is used in computers?
- (ii) Convert the following decimal numbers into binary.
 - a) 57₁₀
 - b) 137.25₁₀
 - c) -45₁₀
 - d) -6.625₁₀

(iii)

- a) What is **BCD**?
- What are the differences in **Gray Code** and **BCD** and their different applications? (give 02)
- (iv)Convert the following words into ASCII code (ASCII Table is in Appendix). Present your answer in base 16.

DIGITAL COMPUTER

Butterfly

Q2.

- (i) What are the results of the following operations when A = 1 and B = 1. Briefly justify your answer in words.
 - ^o A + B when A and B are Boolean.
 - $^{\circ}$ A + B when A and B are binary.

(ii)

- a. Use the following truth table to derive $\operatorname{\mathbf{POS}}$ term for the output X
- b. Simplify the above POS term using **K-Map** (Karnaugh Map) method.

A	В	C	D	\mathbf{X}		
0 0 0 0 0 0 0 0 1 1 1 1 1 1	0	0	0	1 1 0 0 1 0 1 0 1 0 1 0		
0	0	0	1	1		
0	0	1	0	0		
0	0 0 0 1 1 1 1 0 0	0 1 1 0 0 1 1 0 0 1 1 0	1	0		
0	1	0	0	1		
0	1	0	1	1		
0	1	1	0	0		
0	1	-1	1	0		
1	0	0	0	1		
1	0	0	1	0		
1	0	1	0	1		
1	0	1	1	0		
1	1	0	0	1		
1	1	0	1	0		
1	1	1	0 1 0 1 0 1 0 1 0 1 0 1	1		
1	1	1	1	0		

- (iii) Consider the following Logic Circuit.
 - a. Simplify the circuit using Boolean Algebraic Rules.
 - b. Draw the simplified circuit diagram using appropriate logic gates.

Q3.

(i)

- a. Draw the truth table and the logic circuit for a Half Adder.
- b. Draw the logic circuit above (part a) for Half Adder using XOR gates.
- (ii) Decoder is a circuit that changes a code into a set of signals.
 - a. Draw the truth table for a 2-to-4 Decoder.
 - b. Draw the logic circuit for the 2-to-4 Decoder.
 - c. Draw the block diagram design of a 2-to-4 Decoder using only 1-to-2
 Decoders.
- (iii)Explain the operation of a **DeMultiplexer** using a block diagram. List two (**02**) uses of **Demultiplexers**.

Q4.

(i)

- a. What is a Sequential Logic Circuit?
- b. What are the classes of Sequential Circuits?
- (ii) Describe the function of the Master-Slave JK flip-flop. (Use block diagrams.)
- (iii)Describe the function of a **Shift Register** using a block diagram of any one of the four types of Shift Registers?
- (iv) Draw the timing diagram for the four bit synchronous counter.

Q5.

- (i) List five (05) properties of Asynchronous Sequential Circuits.
- (ii) What is Race Condition? Explain with examples.
- (iii) Draw the block diagram and truth table for a asynchronous decade counter.
- (iv) Discuss four(04) advantages of asynchronous counters.

Q6.

- (i) What are the steps the **Central Processing Unit** perform for each instruction once the necessary data and instruction are in memory?
- (ii) How does data and instructions are transferred from an input device into the memory?
- (iii) *Reads* dominate processor cache accesses. All instruction accesses are *Reads*. What are the *Read* policies, and briefly describe them.
- (iv)Describe how the CPU (Central Processing Unit), in association with the memory, executes a computer program.

Appendix - ASCII Table

Dec	Hex	Name	Char	Ctrl-char	Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char
0	0	Null	NUL	CTRL-@	32	20	Space	64	40	0	96	60	*
1	1	Start of heading	SOH	CTRL-A	33	21		65	41	Α	97	61	a
2	2	Start of text	STX	CTRL=B	34	22	**	66	42	₿	98	62	b
3	3	End of text	ETX	CTRL-C	35	23	#	67	43	C	99	63	c
4	4	End of xmit	EOT	CTRL-D	36	24	\$	68	44	D	100	64	d
5	5	Enquiry	ENQ	CTRL-E	37	25	%	69	45	E	101	65	e
6	6	Acknowledge	ACK	CTRL-F	38	26	8.	70	46	F	102	66	f
7	7	Bell	8EL	CTRL-G	39	27	š	71	47	G	103	67	g
8	8	8 ackspace	65	CTRL-H	40	28	Ĺ	72	48	Н	104	68	h
9	9	Horizontal tab	HT	CTRL*I	41	29		73	49	İ	105	69	ì
10	04	Line feed	LF	CTRL-)	42	2A	*	74	44	j	106	бA	j
11	08	Vertical tab	VT	CTRL-K	43	28	+	75	48	K	107	6B	k
12	OC	Form feed	FF	CTRL-L	44	2C	į.	76	4C.	L	108	6C	1
13	00	Carriage feed	CR	CTRL-M	45	20	**	77	40	М	109	6D	m
14	Œ	Shift out	50	CTRL-N	46	2E	*	78	4E	N	110	6E	'n
15	OF	Shiftin	SI	CTRL-O	47	2F		79	4F	Q	111	6F	0
16	10	Data line escape	DLE	CTRL-P	46	30	0	80	50	P	112	70	р
17	11	Device control 1	DCI	CTRL-Q	49	31	1	81	51	Q	113	71	g g
18	12	Device control 2	DC2	CTRL-R	50	32	2	82	52	R	114	72	ř
19	13	Device control 3	DC3	CTRL-S	51	33	3	83	53	S	115	73	ş
20	14	Device control 4	DC4	CTRL-T	52	34	4	84	54	T	116	74	t
21	15	Neg acknowledge	NAK	CTRL-U	53	35	5	95	55	U	117	75	u
22	16	Synchronous idle	SYN	CTRL-V	54	36	6	86	56	٧	118	76	¥
23	17	End of xmit block	ETB	CTRL-W	55	37	7	87	57	W	119	77	₩
24	18	Cancel	CAN	CTRL-X	56	38	8 .	88	58	Х	120	78	8
25	19	End of medium	EM	CTRL-Y	57	39	9	89	59	Y	121	79	y
26	14	Substitute	SUB	CTRL-Z	58	34	. *	90	5Δ	Z	122	7A	Z
27	18	Escape	ESC	CTRL-[59	30	2	91	58	ĺ	123	78	1
28	1C	File separator	FS	CTRL-\	60	3C	<	92	50	1	124	7C	1.
29	10	Group separator	65	CTRL=]	61	3D	***	93	5D]	125	70)
30 .	1E	Record separator	RS	CTRL-^	62	3E	>	94	5E	^	126	7E	re i
31	1F	Unit separator	US	CTRL	63	3F	?	95	5F	5000	127	7 F	DEL