THE OPEN UNIVERSITY OF SRI LANKA B.Sc/B.Ed DEGREE PROGRAMME 2012/2013 Level 4 - CMU2122/CME4122 INORGANIC CHEMISTRY ASSIGNMENT TEST I (NBT) 18th February 2013. 4.00 - 5.30 p.m. | Part A - 20 Multiple Choice Questions (60 Marks) Answer all questions Select the most correct answer to each question given below and mark a cross X over the answer on the given answer sheet. Any answer with more than one X will not be counted. | | | | | | |--|---|---|--|--|--| | | | | | | | | 2. Consider the following ligation (a) gly (b) end (c) The bidentate ligand/s is/(1) (b) only 4) (b) & (c) only. | n (c) $C_2O_4^{2-}$ are | 3) (a) & (c) only. | | | | | 2) Dichloro(ethylene3) Dichlorodicarbony4) Dicarbonyldichlor | omplex [FeCl ₂ (en)(CO) ₂] is o(ethylenediamine)ferrate(II) diamine)dicarbonyliron(II) o(ethylenediamine)iron(II) o(ethylenediamine)iron(II) o(ethylenediamine)ferrous(II) | , | | | | | | isomers of the complex with 3) 4 4) 5 5) 6 | the formula [FeCl ₂ (en)(CO) ₂] are, | | | | | 5. Which of the following sta
1) The secondary val
2) It shows <i>cis-trans</i>
3) The molar conduc
4) The primary valend
5) None of the above | ency of Ni is +2. isomerism tivity of this complex is not a cy of Ni is 4. | | | | | | | p number of Mo = 6) | paramagnetic complex. | | | | | 7. Predict the spin only magnetic moment in BM of the complex ion [RhCl ₄] Chloride is a weak ligand and $\mu = [n(n+2)]^{1/2}$ B.M. (Group number of Rh = 9) 1) 1.73 2) 2.83 3) 3.88 4) 4.89 5) 0 | |--| | 8. The Crystal field splitting of a metal depends on, (a) the period in which it is located (b) the oxidation state of the metal (c) the Group number of the metal The correct statement/s is/are 1) (c) only 2) (a) & (c) only 3) (b) & (c) only 4) (a) & (b) only 5) (a), (b), & (c) | | 9. Consider statements regarding isomerism. (a) [PdCl₂(CO)₂] does not show geometric isomerism. (b) Complex [Ru(NCS)(CO)₅]Cl₂ & [Ru(SCN)(CO)₅]Cl₂ are coordination isomers. (c) [PtCl(Br)(CO)(H₂O)] do not exhibit optical isomerism, because they have a plane of symmetry. The correct statement/s is/are | | 1) (c) only 2) (b) only 3) (a) & (b) only 4) (b) & (c) only 5) answer is not given | | Which of the following statements is not true about [CoCl₂(en)₂]? The IUPAC name of this complex is dichlorobis(ethylenediamine)cobalt(II) This complex does not show optical isomerism. The molar conductivity of this complex is zero. The secondary valency of Co is 6. This complex does show geometrical isomerism. | | 11. The reaction, [CoH(PPh₃)₃] + CH₂=CH₂ → [Co(CH₂CH₃)(PPh₃)₃] can be classified as an oxidation reaction. an insertion reaction. an association reaction. 4) an association reaction. none of the above | | 12. Consider the following statements. (a) Equilibrium constants of a substitution reaction vary K₁ > K₂ > K₃ (b) Larger the β value higher the thermodynamic stability of the complex. (c) [Fe(H₂O)₂(en)₂]Cl₃ is more stable than [Fe(H₂O)₂(NH₃)₄]Cl₃. The correct statement/s is/are 1) (b) only 2) (b) & (c) only 3) (a) & (c) only 4) (a) & (b) only 5) (a), (b), & (c) | | 13. Match A, B, C, D with a, b, c, d. A. Ionic solids a. Diamond and Silicon B. Molecular solids b. Cu,Zn,Na C. Covalent solids c. Solid CO ₂ and I ₂ D. Metallic solids d. KCl and Na ₂ SO ₄ | The correct answer is | | A | В | С | D | |---|---|---|---|---| | 1 | a | Ъ | С | d | | 2 | b | С | a | d | | 3 | d | С | a | b | | 4 | a | С | đ | Ь | | 5 | d | С | b | а | | | 14. | The units | which occu | py lattice | points in | covalent | solids | are | |--|-----|-----------|------------|------------|-----------|----------|--------|-----| |--|-----|-----------|------------|------------|-----------|----------|--------|-----| - 1) Molecules - 2) Ions - 3) Atoms - 4) Covalent bonds - 5) Ions and atoms | 4 .77 | FT-11 . | P | | • | | | | |-------|------------|----------------|--------------------|------------|---------|-----|------| | 15 | The tune | OF Offractions | present between | #13 O LOCK | 100 111 | 106 | 01'0 | | 10 | , THE LYDE | OF WILL WELLOW | DI COCHE DELLE COL | | 102 111 | | 41 | | | | | | | | | | - 1) van der Waal attractions - 2) Covalent bonds - 3) Hydrogen bonds - 4) Ionic bonds - 5) Both Hydrogen bonds and van der Waal attractions - 1) one - 2) two - 3) four - 4) nine ## 17. Bragg's law is given by the equation - 1) $n\lambda = 2\theta \sin\theta$ - 2) $n\lambda = 2d\sin\theta$ - 3) E = hv - 4) $2n\lambda = 2d\sin\theta$ - 5) $n\lambda/2 = 2d\sin\theta$ - 1) Weakly bonded together 2) Strongly bonded together - 3) Spherically symmetrical - 4) Arranged in planes - 5) Not placed in a regular pattern - 1) Frenkel defect - 2) Schottky defect - 3) Metal deficiency defect - 4) Metal excess defect 5) F-centres ## 20. The unit cell present in ABAB.....type of closest packing of atoms is - 1) Tetragonal - 2) Hexagonal - 3) Face centred cubic - 4) Primitive cubic - 5) Rhombic # THE OPEN UNIVERSITY OF SRI LANKA B. Sc DEGREE PROGRAMME 2012/2013 CMU2122/CME4122 – INORGANIC CHEMISTRY- LEVEL 4 ASSIGNMENT TEST-I (Part A) MCQ ANSWER SHEET: Mark a cross (X) over the most suitable answer. | | | | | | | | | | | | | | | | | | | Par | t A | | |--------|----|---|---|---|-------------|-----|------|-----|-------|-----|------|-----|------|-----|---|-----|---|------|-----|----------| | Reg. N | ο. | | | | | | | | For | Exa | amin | ers | Use | | | | | Par | t B | | | | | | | | | | | | | | | | r | | | | | Γota | 1% | ··· | | | | | | | | | | | | | | | Mark | CS | • | | | | | | | | | | | (| Corr | ect | Ans | wer | s | | | | | | | | | | | | | | | | | 7 | Tron | g A | nswe | ers | | | | i | | | | | | | | | | | | • | | | lota | 1 | | | | | | | | | | | | • | | | | | | | • | | · · · · · · | - | | | | | | | - | | | | | | | . | | 1. | 1 | 2 | 3 | 4 | 5 | | 2. | 1 | 2 | 3 | 4 | 5 | | 3. | 1 | 2 | 3 | 4 | 5 | | | 4. | 1 | 2 | 3 | 4 | 5 | | 5. | 1 | 2 | 3 | 4 | 5 | | 6. | 1 | 2 | 3 | 4 | 5 | | | 7. | 1 | 2 | 3 | 4 | 5 | | 8. | 1 | 2 | 3 | 4 | 5 |] | 9. | 1 | 2 | 3 | 4 | 5 | | | 10 | | | | | · | .i | | | · - · | 1 - | | | | _ | | 1 _ | | | | 1 | | 10. | 1 | 2 | 3 | 4 | 5 | | 11. | 1 | 2 | 3 | 4 | 5 |] 3 | .2. | 1 | 2 | 3 | 4 | 5 | | | 13. | 1 | 2 | 3 | 4 | 5 | = | 14. | 1 | 2 | 3 | 4 | 5 |] 1 | .5. | 1 | 2 | 3 | 4 | 5 | | | 16. | 1 | 2 | 3 | 4 | 5 | : | 17. | 1 | 2 | 3 | 4 | 5 |] 1 | .8. | 1 | 2 | 3 | 4 | 5 | | | 19. | 1 | 2 | 3 | 4 | 5 | 2 | 20. | 1 | 2 | 3 | 4 | 5 | | | | | | | | | | Part B- Structured Essay (40 Marks) Answer all questions only in the SPACE provided. Attached sheets will not be graded. | |--| | 1. (a) (i) Give the IUPAC name of [CrBr(NH ₃) ₂ (H ₂ O) ₃]Cl ₂ . | | | | (ii) Draw the structures of the three isomers of [FeBr₂(ox)(NH₃)₂] (ox = oxalate).(clearly indicate the geometry) | | • | | | | (iii) Write the chemical formula of potassium diaquacarbonyltrifluoorochromate(II). | | (b) Using Crystal Field Theory, (i) Determine the d-electron configuration (number of e_g and t_{2g} electrons) of Rh in [RhF₆]³⁻. (Group number. of Rh = 9; Assume F⁻ as a weak ligand) | | (ii) Calculate the Crystal Field Stabilization Energy (CFSE) in kJ mol ⁻¹ if $\Delta_0 = 200$ kJ mol ⁻¹ . | | (c) Using Valence Bond Theory, determine the hybridization of Rh in the paramagnetic complex ion [RhF ₆] ³⁻ . (Group number of Rh = 9) | | (20 marks) | | cation and anion ar | ure of an ionic crystalline subre as follows: Cations: corner f cubic edge and one in the co | rs of the cube and the cent | • | |--|--|-----------------------------|--| | (i) Draw the unit of
(ii) At higher temporate the defect. | cell of AB .
peratures AB shows Frenkel (| defect. Sketch a labeled di | (5 marks) iagram to show (5 marks) | | (i) | | (ii) | | | | | | | | | | | | | (iii) What is the ma | in difference between the Sch | nottky defect and the Fren | kel defect?
(2 marks) | | (iv) If the unit cell di | imension a, of AB is 564 pm | calculate the density of A | B in kg m ⁻³ .
(8 marks) | | (iv) If the unit cell di | imension a, of AB is 564 pm | calculate the density of A | | | • | | |---|---------------------------------------| | | | | | | | | | | | | | | · · | | | • | | | | | | | | * | | | • | | | | | | | Registration No. : | | | Registration No. : | | | | | | · · · · · · · · · · · · · · · · · · · | | • | Name : | | | reame | | • | | | | Address | | | . = ===== | • | | | | . The Open University of Sri Lanka B.Sc. Degree Program 2012/2013 CMU2122 - Inorganic Chemistry - Level 4 Assignment Test - I Answer Guide ## Part A - MCQ ANSWERS 1. (3) 2. (5) 3. (4) 4. (2) 5. (2) 6. (3) 7. (4) 8. (5) 9. (1) 10. (2) rnomady beliagan ped to bit experienced between a civil (iii). 11. (3) 12. (5) 13. (3) 14. (3) 15. (5) 16. (2) 17. (2) 18. (4) 19. (3) 20. (2) ### Part B 1. (a) (i) diamminetriaquabromochromium(III) chloride (iii) $K[C_1F_3(CO)(H_2O)_2]$ (b) (i) Rh⁰ - d⁹; Rh³⁺ - d⁶ (Octahedral arrangement in a weak field) (ii) CFSE = $-0.4 \times 4 \times \Delta_0 + 0.6 \times 2 \times \Delta_0$ = $-0.4 \Delta_0 = -0.4 \times 200 \text{ kJ mol}^{-1}$ = -80 kJ mol^{-1} (iii) Since compound is paramagnetic, it has unpaired electrons. Rh³⁺ - d⁶ $Hybridization = sp^3d^2$ (i) A unit cell structure similar to NaCl in Unit III-Page 25 (Figure 2.3) Should be a properly labeled diagram to show the anion and cation positions. (ii) - (iii) The Frenkel defect causes a cation to leave its own lattice and go to another, while Sckhotty defect depicts that an equal number of cations and anions must be absent to maintain charge neutrality. - (iv) Volume of the unit cell = $(564 \times 10^{-12})^3 \text{ m}^3$ = 1.79 x 10⁻²⁸ m³ Molar mass of $AB = M g mol^{-1}$ Mass of 6.023 x 10^{23} molecules = M g mol⁻¹ Mass of one molecule = $M \text{ g mol}^{-1}/(6.023 \times 10^{23}) \text{ mol}^{-1}$ AB is a fcc structure and there are 4 A⁺ ions and 4 B⁻ ions in a unit cell. Mass of one unit cell = $4M/(6.023 \times 10^{23})$ g $= 4M/(6.023 \times 10^{26}) \text{kg}$ Density = Mass/Volume Density of AB = $4M/(6.023 \times 10^{26})(1.79 \times 10^{-28}) \text{ kg m}^{-3}$ $= 37.1 \text{M kg m}^{-3}$