The Open University of Sri Lanka B.Sc./B.Ed. Degree Programme Open Book Test (OBT) - 2010/2011 Applied Mathematics – Level 04 APU2141 –Regression Analysis I

Date: 07th April 2011

Time: 4.00 pm - 5.30 pm

Answer All Questions.

Non programmable calculators are permitted

- O1. The following information is related to a study on how the amount of time spent on studying affects the performance. Let Y denotes the examination mark and x denotes the amount of time spent (in hours). Let β_0 and β_1 be parameters. Consider the regression model $Y = f(x) + \epsilon$, where ϵ denotes the random error component.
 - i) In each case below, classify the regression function f(x) as a linear regression function or not. In each case, give reasons for your answer.

(a)
$$f(x) = \beta_0 + \beta_1 x$$

(b)
$$f(x) = \beta_0 + e^{\beta_1 x}$$

(c)
$$f(x) = \beta_0 + \beta_1 x^2$$

(d)
$$f(x) = \beta_0 x^2 + \beta_1 x^3$$

(e)
$$f(x) = \beta_0 + \beta_1 x e^x$$

ii) For each of the response functions, f(x), given in Part (i), state whether the model $Y = f(x) + \varepsilon$ is a simple linear regression model or not. In each case, give reasons for your answer.

02. a) Let Y denotes the final examination mark and x denotes the continuous assessment mark of a randomly chosen student. The following summary statistics were obtained based on the marks of 20 students.

$$\sum x_i = 961;$$
 $\sum y_i = 1200;$ $\sum x_i y_i = 66333$ $\sum x_i^2 = 56331;$ $\sum y_i^2 = 79760.$

Consider fitting the model $y = \beta_0 + \beta_1 x + \varepsilon$.

- i) Find the least squares estimates for β_0 and β_1 .
- ii) Write down the equation of the fitted regression line.
- b) Let β_0 and β_1 be parameters. For a simple linear regression model fitted using the method of least squares, state whether the following statements are true or false. In each case, give reasons for your answer.
 - i) The random error component of an observation is the deviation of the response from the fitted value.
 - ii) The fitted values for any two observations that have the same response values are equal.
- 03. The amount of fertilizer added to the plot (in grams), x, and the yield obtained (in kilograms), y, from 20 plots are given in the accompanying table.

х	5	5	6	8	8	8	10	12	14	14
y	2.0	2.1	2.2	2.3	2.4	2.5	2.6	2.8	2.8	3.0
	140	160	160	160	100	100	1.20.0	100	04.0	1 ~
\boldsymbol{x}	1 14.0	1 10.0	1 10.0	10.0	1 18.0	1 18.0	1 20.0	1 22	1.24.0	1 /4

- i) Compute the Pearson Correlation Coefficient, r. In relation to this study, what does it measure?
- ii) Based on the value of r, a student stated that there is no relationship between the amount of fertilizer added and the yield. Do you agree with the statement of the student? Give reasons for your answer.
- iii) State whether the following statement is true or false. Give reasons for your answer.

If there is a positive linear association between the response and the predictor variable, an increase in the predictor variable will cause an increase in the response variable.