The Open University of Sri Lanka B.Sc/B.Ed Degree Programme Open Book Test (OBT)- 2010/2011 Level 04- Applied Mathematics AMU2185/AME4185 – Numerical Analysis I

Duration :- One and half hours

Date: - 07.04.2011

Time:- 4.00p.m.-5.30p.m.

Answer ALL the questions

- 1. (a) Why numerical methods are necessary to solve some problems?
 - (b) Show by graphical method that the equation $\cos x \log_e x = 0$ has a unique solution in the range $\left[1, \frac{\pi}{2}\right]$.
 - (c) Tabulate the values of $\cos x$ and $\log_e x$ and obtain the numerical solution of above equation correct to 3 decimal places.
- 2. (a) Explain what are meant by the terms
 - (i) Fundamental error
 - (ii) Rounding error
 - (iii) Absolute error
 - (b) The function q is defined as $q = \frac{x}{y}$. If x = 4.536 and y = 1.32, find the value of q (correct to the appropriate decimal place). Also find the relative error in the result.
 - (c) Let the sum S = a + b. Show that $|r_s| \le \left| \frac{a}{|S|} \right| |r_a| + \left| \frac{b}{|S|} \right| |r_b|$, where r_s, r_a and r_b are the relative errors in S, a and b respectively.
- 3. (a) (i) Show that the equation $f(x) = x^3 x 4 = 0$ has a root in the interval [1,2].
 - (ii) Using the bisection method find the root of f(x) defined in part (i) correct to 3 decimal places.
 - (b) A root of the equation $2x \log_{10} x = 7$ lies between 3.5 and 4.0. Using the method of false position, find this root correct to five decimal places.

The Open University of Sri Lanka B.Sc/B.Ed Degree Programme Closed Book Test (CBT)- 2010/2011 Level 04- Applied Mathematics AMU2185/AME4185 – Numerical Analysis I

Duration: - One and half hours

Date: - 02.05.2011

Time:- 4.00p.m.-5.30p.m.

Answer ALL the questions

- 1. (a) What is the geometric interpretation of the Newton's formula for solving f(x) = 0.
 - (b) Use the Newton's method to find $\sqrt[3]{788}$ correct to 4 decimal places. Assume that $x_0 = 7.0$.
- 2. (a) Derive Horner's scheme for division of a monic n^{th} degree polynomial $f(x) = x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n \text{ by a factor } (x \alpha).$
 - (b) Use the Horner's scheme to find all roots of $x^3 + x^2 + 12x 24 = 0$. All roots should be correct up to 4 decimal places (in case of any complex roots, each part to that decimal place).
- 3. (a) Explain how the Lagrange interpolation polynomial p(x) is found for the data set $(x_0, y_0), (x_1, y_1), \dots, (x_n, y_n)$.
 - (b) Use Lagrange's method to find ln 2.3 from the table.

x	2.0	2.5	3.0
ln x	0.69315	0.91629	1.09861

How accurate is your result.