

THE OPEN UNIVERSITY OF SRI LANKA B.Sc/B.Ed DEGREE PROGRAMME - 2011/2012 Level 4 - CMU2122/CME4122 INORGANIC CHEMISTRY ASSIGNMENT TEST II (NBT)

13th October 2011 (Thursday)

4.00 - 5.30 p.m.

Part A - 20 Multiple Choice Questions (60 Marks)

Answer all questions

Select the most correct answer to each question given below and mark a cross X over the answer on the given answer sheet. Any answer with more than one X will not be counted. 1/6th of a mark will be deducted for each incorrect answer.

> $= 6.023 \times 10^{23} \,\mathrm{mol}^{-1}$ Avogadro Constant, L $= 3 \times 10^8 \text{ m s}^{-1}$ Velocity of light, c = 1.007825 u Mass of a hydrogen atom Mass of a neutron = 1.008665 u $= 1.661 \times 10^{-27} \text{kg}$ 1 u $= 1.6021 \times 10^{-13} J$ 1 MeV

1. Which of the following nuclides will be expected to be radioactive?

$$^{16}_{8}O$$
, $^{18}_{9}F$, $^{20}_{10}Ne$, $^{39}_{19}K$, $^{40}_{20}Ca$

- (1) ${}_{0}^{16}O$ (2) ${}_{0}^{18}F$ (3) ${}_{10}^{20}Ne$
- (4) $_{19}^{39}K$ (5) $_{20}^{40}Ca$

2. Following are the comments on the decay series:

(c) x is ${}^{0}\beta$

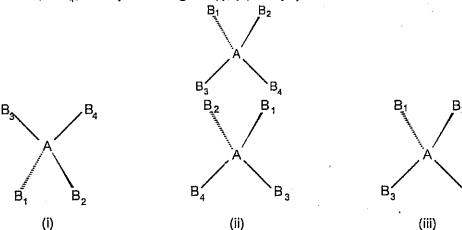
(d) Z is $^{230}_{89}Ac$

The answer is

- (1) (a) and (b) only
- (2) (b) and (c) only
- (3) (c) and (d) only

- (4) (d) and (a) only
- (5) (a), (b) and (c) only
- 3. Predict the type of nuclear decay process for the radionuclide, ${}^{11}_{6}C$ from the following:

 - (a) electron emission (b) positron emission
- (c) electron capture (d) γ emission


The answer is

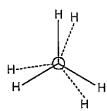
- (1) (a) and (b) only
- (2) (b) and (c) only
- (3) (c) and (d) only

- (4) (d) and (a) only
- (5) (a), (b) and (c) only

4. Identif	y the type of m	uclear ec	quation: $^{30}_{15}P \rightarrow ^{30}_{14}Si$	+ ?		
(1) α- decay		(2) electron emission	(3	3) positron en	nission
(-	4) electron cap	ture	(5) γ emission			•
	percentage of the	ne origin	cal imaging is labeled val activity in the sampl (2) 13.6% (5) 33%		fter 300 min?	
	_		s given below, which c ${}^{13}_{6}C$, ${}^{18}_{9}F$, ${}^{19}_{9}F$, ${}^{16}_{8}O$		sed as a trace	r in positron
	$(1)_{6}^{13}C$	(2) ${}^{18}_{9}F$	(3) $^{19}_{9}F$	$(4)_{8}^{16}O$	(5) 18 (9
	tart with 1.000	g of stro	ontium-90, 0.953 g wil	l remain afte	er 2.00 yr. Wl	nat is the half-life
	(1) 14.4 years		(2) 23.8 years (5) 57.6 years	(3) 28.8 y	ears	
(a) net			$^{235}_{92}U + ^{1}_{0}n \rightarrow ^{236}_{92}U^{*}$ itron emission (c) nu			
1110 111	(1) (a) and (b)		(2) (b) and (c) only (5) ((a), (b) and (c) on		3) (c) and (d)	only
9. What i			nvestigated using iodin (3) heart		adiotracer? 1) spleen	(5) lungs
	tain rock is fou $(t_{1/2}, \text{ of }^{87}Rb \text{ i})$		ive ⁸⁷ Rb: ⁸⁷ Sr mass ration of the state	o of 1.00: 0.	004. What is	the age of the
			• -	(3) 2.77x	10 ⁸ y	
(i) (ii) (iii) The (1)	its nuclear ske its electron de the relative ler correct statem (i) and (ii) only	eleton. nsity dis ngths of nents, ou /. (2)	determined by tribution. chemical bonds and the t of (i), (ii) and (iii) abo (i) and (iii) only. None of the answers (ove, are (3) (ii) and	(iii) only.	
(i) (ii) (iii) The (1)	nuclear config nuclear config correct statem (ii) only.	nfigurations gurations gurations nent/s, ou (2)	ons. where similar nuclei of where identical nuclei ut of (i), (ii) and (iii) ab	occupy idea	ntical position	-

13. The results of three operations on the following configuration of the perfect tetrahedral molecule, AB₄, are depicted in figures (i), (ii) and (iii).

The outcome/s which involve/s a symmetry operation, out of (i), (ii) and (iii) above, is/are


- (1) (i) only.
- (2) (i) and (ii) only.
- (3) (i) and (iii) only.

- (4) (ii) and (iii) only
- (5) None.
- 14 Consider the following statements.
 - (i) Only a limited number of rotation operations can be performed about an axis of rotation.
 - (ii) A given rotation operation (on a molecule) may not be a symmetry operation.
 - (iii) Always, we do <u>not</u> have to break chemical bonds (in a molecule) to bring about, physically, a rotation operation.

The correct statements, out of (i), (ii) and (iii) above, are

- (1) (i) and (ii) only.
- (2) (i) and (iii) only.
- (3) (ii) and (iii) only.

- (4) All (i), (ii) and (iii)
- (5) None of the <u>answers</u> (1), (2), (3) or (4), is correct.
- 15. Consider the following statements about the C-C bond axis of ethane in neither staggered nor eclipsed conformation, the Newmann projection formula of which is given below.

- (i) It is an axis of rotation.
- (ii) The order of this axis of rotation is 3.
- (iii) There are an infinite number of rotational symmetry operations that can be performed about this axis.

The correct statements, out of (i), (ii) and (iii) above, are

- (1) (i) and (ii) only.
- (2) (i) and (iii) only.
- (3) (ii) and (iii) only.

- (4) All (i), (ii) and (iii)
- (5) None of the <u>answers</u> (1), (2), (3) or (4), is correct.
- 16. The total set of (different) axes of rotation in a molecule of benzene is
 - $(1) C_6, 3C_2$
- $(2) C_6, 4C_2$
- $(3) C_6, 5C_2$

- $(4) C_6, 6C_2$
- (5) None of the <u>answers</u> (1), (2), (3) or (4), is correct.

	The principal axis of a $PtCl_4^{2-}$ ion is of order 4. Thus all the possible rotational symmetry operations about this axis bring about only 4 distinct outcomes. The set of rotational symmetry operations (about this axis) which brings about the four distinct outcomes is (1) C_4^2 , C_4^3 , C_4^5 , E (2) C_4^1 , C_4^4 , C_4^5 , C_4^2 (3) C_4^2 , C_4^6 , C_4^{10} , C_4^{10
18.	 Consider the following statements. (i) In a molecule, the nuclei of the same kind (i.e. having the same atomic and mass numbers), which are located out of a symmetry plane must appear in even number. (ii) A symmetry plane always passes through a single nucleus of a kind in a molecule. (iii) Always a reflection through a symmetry plane is a symmetry operation.

(1) (i) and (ii) only.
(2) (i) and (iii) only.
(3) (ii) and (iii) only.
(4) All (i), (ii) and (iii)
(5) None of the answers (1), (2), (3) or (4), is correct.
19. The most complete description of the total set of symmetry planes in an ion of

- cyclopentadieneyl anion is $(1) \sigma_{v}, 4\sigma_{d} \qquad (2) \sigma_{h}, \sigma_{v}, 4\sigma_{d} \qquad (3) \sigma_{h}, 5\sigma_{d}$
 - (4) σ_h , $2\sigma_v$, $3\sigma_d$ (5) None of the <u>answers</u> (1), (2), (3) or (4), is correct.
- 20. The numbers of reflection symmetry operations, which produce distinct outcomes that can be carried out with respect to each of the following symmetry planes
 - (i) σ_v of H_2O (ii)
- (ii) σ_h of PtCl₄²⁻
 - (iii) σ_h of eclipsed ethane are given respectively by

The correct statements, out of (i), (ii) and (iii) above, are

(1) 2,2,1. (2) 1,2,2. (3) 2,1,1. (4) 2,2,2. (5) 2,1,2.

THE OPEN UNIVERSITY OF SRI LANKA B. Sc DEGREE PROGRAMME 2011/2012 CMU2122/CME4122 – INORGANIC CHEMISTRY- LEVEL 4 ASSIGNMENT TEST-II (Part A)

	ICQ ANSWER SHEET: Mark a cross (X) over the most						Marks											
ACQ A titable				HE]	ET: N	lark a	cros	s (X	.) ov	er tl	ne mo	st			Par	rt A		
o No	_ [Ι,	B	5	: : :	*	7		-	Par	rt B		
g. No				For Examiners Use							-,	Total %		<u></u>				
				Γ						—- _T	Mar	ks	۱ .					
				Un	answ	ered												
				Co	rrec	t Ansı	wers											
				Wr	ong :	Answe:	rs						=					
				Тс	otal													
													•					
1.	1	2	3	4	5	2.	[I	2	j 3	4	5	3.	1	2	! = -	1 4	5	1
			-							<u> </u>		٥.			Ľ.	J	<u> </u>	j
4.	1	2	3	4	5	5.	1	2	3	4	5	6.	1	2	3	4	5	1
							L	1 .	J	<u></u>			1]		1	<u> </u>	J
7.	1	2	3	4	5	8.	1	2	3	4	.5	9.	1	2	3	4	5	
	•L			/ 						!	· · · · · ·		L					5
10.	1	2	3	4	5	11.	1	2	3	4	5	12.	1	2	3	4	5	
			· - ·						·				r	1	· · · · · ·	T	 -	1
13.	1	2	3	4	5	14.	1	2	3	4	5	15.	1	2	3	4	5	
16.	1	2	3	4	5	17.	1	2	3	4	5	18.	1	2	3	4	5	
~J.						f •		_				 .						
10	[1 [2	1 2 1	Λ	5	20	7	2	131	1	5							

Part B- Structured Essay (40 M Answer all questions only in the	arks) SPACE PROVIDED. Attached sheets will not be
graded.	
 (a) Write a balanced nuclear eq 	puation for each of the reactions described below:
(i) Positron emission by ${}^{15}_{8}O$	
(ii) β^- decay by $^{131}_{53}I$	••••••
(iii) Electron capture by $^{40}_{19}K$	
nuclides are formed and the compound. The resulting sam	naging, has a half-life of 20.4 min. The carbon-11 arbon atoms are then incorporated into an appropriate ple is injected into a patient, and the medical image is takes five half-lives, what percentage of the original e?
(c) (i) Define the term 'binding en	nergy'.
(ii) Calculate the mass defect a which the mass is 7.016003	and average binding energy (in MeV) for lithium-7 of 3 u.
	~ · .
_ ·	I in MeV per fusion in the process, ${}_{1}^{2}H + {}_{1}^{1}H \rightarrow {}_{2}^{3}He$, are ${}_{1}^{2}H: 2.01410178 \text{ u}, {}_{1}^{1}H: 1.007825 \text{ u} \text{ and } {}_{2}^{3}He:$

(ii) Describe where it is/they are located.

(i) How many rotational symmetry axes are there in the molecule shown in Figure 2?

.....

	(iii)	What is/are its/their order/s?
	(iv)	How many symmetry <u>planes</u> are there in the molecule shown in Figure 2?
	(v)	Describe where it is/they are located.
	(vi)	Can the rotational symmetry axis/axes and planes of symmetry in the molecule in Figure 2 be the same as those in the molecule in Figure 1? Briefly explain your
		answer.
•		······································
c)	Fig	agine changing the structure of AB_3 from that depicted in Figure 1 to that depicted in ure 3 by keeping the AB bond lengths the same and making one BAB angle smaller in the other two which are kept equal to each other.
		B_1 B_2 B_3
	The	bond angles have the relationship, $B_1AB_2 = B_1AB_3 > B_2AB_3$.
	(i)	How many rotational symmetry <u>axes</u> are there in the molecule shown in Figure 3?
	(ii)	How many symmetry <u>planes</u> are there in the molecule shown in Figure 3?
	(iii)	Describe where it is/they are located.
	(111)	Describe where it is/they are located.
		(20 marks

The Open University of Sri Lanka B.Sc. Degree Program 2010/2011

CMU2122 / CME4122 - Inorganic Chemistry - Level 4

Assignment Test - II - Answer Guide

Was a series (i)

Part A - MCQ ANSWERS

1. (2)	2. (4)	3. (2)	4. (3)	5. (3)
6. (2)	7. (3)	8. (3)	9. (2)	10. (3)
11. (2)	12. (4)	13. (4)	14. (3)	15. (4)
16 (4)	17 (1)	18. (2)	19. (3)	20. (5)

(i)
$${}_{8}^{15}O \rightarrow {}_{1}^{0}\beta + {}_{7}^{15}N \qquad {}_{1}^{0}\beta \ or {}_{1}^{0}e$$

(ii)
$$_{53}^{131}I \rightarrow _{-1}^{0}\beta + _{54}^{131}Xe \quad _{-1}^{0}\beta \text{ or } _{-1}^{0}e$$

(iii)
$${}^{40}_{19}K + {}^{0}_{-1}e \rightarrow {}^{40}_{18}Ar$$

(b)
$$100\% - \frac{t_{1/2}}{50\%} \rightarrow 50\% - \frac{t_{1/2}}{25\%} \rightarrow 12.5\% - \frac{t_{1/2}}{25\%} \rightarrow 6.25\% - \frac{t_{1/2}}{25\%} \rightarrow 3.125\%$$
Method II: You can use the following equations to calculate the percentage.
$$\lambda = \frac{0.693}{t_{1/2}} \qquad \ln \frac{N}{N_0} = -\lambda t$$

(c) (i) Energy released when the nucleus is assembled/formed from its constituent nucleons OR

Energy required to break up the nucleus into its individual nucleons.

(ii)
$$_{3}^{7}Li$$
 ($Z=3, N=4$)

Mass defect $\Delta m=Zm_{H}+Nm_{N}-M_{atom}$

$$\Delta m = 3 \times 1.007825 + 4 \times 1.008665 - 7.016003 \ u$$

$$= 0.042132 \ u$$

$$E = mc^{2} = 0.042132 \times 1.661 \times 10^{-27} \ kg \times (3 \times 10^{8} \ m \ s^{-1})^{2}$$

$$Total \ BE = 6.3 \times 10^{-12} \ J = 39.3 \ MeV$$

Average
$$BE = 39.3/7 = 5.61 \text{ MeV}$$

(d)
$${}_{1}^{2}H + {}_{1}^{1}H \rightarrow {}_{2}^{3}He$$

$$_{1}^{2}H:2.01410178 u$$
 $_{1}^{1}H:1.007825 u$

 $_{2}^{3}He:3.0160492 u$

Change in the mass,
$$\Delta m = (2.01410178 \ u + 1.007825 \ u) - 3.0160492 \ u = 0.00587758 \ u$$

$$E = mc^{2} = 0.00587758u \times 1.661 \times 10^{-27} kg \times (3 \times 10^{8} m s^{-1})^{2}$$
$$= 5.48 MeV$$

(e) (i)
$${}_{13}^{27}Al + {}_{0}^{1}n \rightarrow {}_{11}^{24}Na + {}_{2}^{4}\alpha \quad ({}_{2}^{4}\alpha \quad or \quad {}_{2}^{4}He)$$

$$(ii)_{8}^{16}O + {}_{1}^{1}p \rightarrow {}_{2}^{4}\alpha + {}_{7}^{13}N$$

(iii)
$${}_{5}^{10}B + {}_{0}^{1}n \rightarrow {}_{2}^{4}\alpha + {}_{3}^{7}Li$$

- (2) (a).
- (i) One
- (ii) It passes through A and is perpendicular to the plane of the three B nuclei.
- (iii) Three (iv) Three
- (v) Passes through one B nucleus and A while bisecting the angle formed by the other two B nuclei at A.
- (b)
- (i) One (ii) It passes through A and is perpendicular to the plane of the three B nuclei
- (iii) Three (iv) Three
- (v) Passes through one B nucleus and A while bisecting the angle formed by the other two B nuclei at A.
- (vi) Yes, In both cases the rotational axis is of order 3 and the three planes pass through it. Hence the angle between any two symmetry planes in both cases is the same at 120°. Therefore, the symmetry planes in the two molecules can be the same.
- (c)
- (i) Zero (ii) One
- (iii) It passes through A and B₁ while bisecting the angle B₂AB₃.