The Open University of Sri Lanka
B.Sc./B.Ed Degree Programme — Level 04
Final Examination 2010/2011
Applied Mathematics
APU 2142 — Newtonian Mechanics I
Duration: Two Hours

Date: -27.06.2011

Time:-1.30 p.m. -3.30 p.m.

Answer Four Questions Only.

1. A particle moving in a straight line, is subjected to a retardation of kv^n where v is the speed at time t and n is a positive constant. Find v as a function of t. Show that, if n < 1, particle will come to rest at a distance $\frac{u^{2-n}}{k(2-n)}$ from the point of projection after a time $\frac{u^{1-n}}{k(1-n)}$ where u is the initial speed.

Discuss briefly what happens when

(a)
$$1 < n < 2$$

(b)
$$n > 2$$
.

2. With the usual notation, show that the velocity and acceleration components of a particle moving along a 2D curve in intrinsic coordinates, are given by $\underline{v} = \dot{s} \, \underline{t}$ and $\underline{a} = \ddot{s} \, \underline{t} + \frac{\dot{s}^2}{\Omega} \, \underline{n}$.

A smooth wire in the form of an arch of a cycloid with intrinsic equation: $s = 4a \sin \psi$, $-\frac{\pi}{2} \le \psi \le \frac{\pi}{2}$ is fixed in a vertical plane, the vertex O being the lowest point of the wire with the tangent at O is horizontal. A bead, of mass m, which can slide freely on the wire, is released from rest at the point where $\psi = \frac{\pi}{6}$. Write down the equations of motion for the bead.

- (a) Find the periodic time of oscillation of the bead.
- (b) Show that the normal contact force exerted by the wire on the bead at a point where the tangent makes an angle ψ with the horizontal is $\frac{1}{4}mg\sec\psi(8\cos^2\psi-3)$

3. With the usual notation show that the velocity and acceleration components in plane polar coordinates are given by $\underline{v} = \dot{r}\underline{e}_r + r\dot{\theta}\underline{e}_{\theta}$ and $\underline{a} = (\ddot{r} - r\dot{\theta}^2)\underline{e}_r + \frac{1}{r}\frac{d(r^2\dot{\theta})}{dt}\underline{e}_{\theta}$.

A particle, of mass m, is projected from a point A, at a distance a from a fixed point O, with a velocity $\frac{\sqrt{\mu}}{a}$, in the direction making an angle of 45° with OA. A force $\frac{\mu m}{r^3}$ directed towards O, where r is the distance from O acts on the particle. Show that the orbit of the particle has the polar equation $r = ae^{-\theta}$.

4. Establish the formula $\underline{F}(t) = m(t) \frac{d\underline{v}}{dt} - \frac{dm}{dt} \underline{u}$ for the motion of a particle of varying mass m(t) moving with velocity \underline{v} under a force $\underline{F}(t)$, matter being condensed at a rate $\frac{dm}{dt}$ with velocity \underline{u} relative to the particle.

A particle P falls from rest under gravity in a straight line through a stationary cloud. The mass of P increases by accretion from the cloud at a rate which at any time is mkv, where m is the mass and v the speed of the particle, k being a constant. Show that, after P has fallen a distance x,

$$kv^2 = g(1 - e^{-2kx})$$

and find the distance the particle has fallen after a time t.

5. Let \underline{H} be the angular momentum about a fixed point O, of a system of particles in motion. Show that $\frac{d\underline{H}}{dt} = \underline{M}$, where \underline{M} is the total moment about O of the external forces acting on the system.

A uniform circular disc, centre C, of mass m and radius r can rotate in a vertical plane about a smooth horizontal axis perpendicular to its plane through a point A on its rim. Initially, the disc is held at rest with AC horizontal. It is then released. Find the components of the force on the axis when AC makes an angle θ with the downward vertical.

Also calculate the magnitude of the force on the axis in the following cases

- (a) when AC is vertical,
- (b) when $\theta = \frac{\pi}{2}$ and
- (c) when θ is greatest.
- 6. For a body in motion about an axis, show that the impulsive moment of the resultant force about the axis is equal to the gain of angular momentum.

A uniform rod AB of length 2a and mass 3m is at rest on a smooth, horizontal table and the rod is free to rotate on the table about a smooth, vertical axis through end A. A particle P of 3m

mass $\frac{3m}{5}$ moving at u ms⁻¹ on the table at right angles to AB strikes the rod at C where

 $AC = \frac{5a}{4}$. P adheres to the rod. Calculate the angular speed with which the rod begins to rotate.