THE OPEN UNIVERSITY OF SRI LANKA FACULTY OF ENGINEERING TECHNOLOGY DIPLOMA IN TECHNOLOGY – LEVEL 3 FINAL EXAMINATION 2007/2008

MEX3272 - APPLIED ELECTRONICS

DATE

: 24th APRIL 2008

TIME

: 0930 HRS. - 1230 HRS.

DURATION

THREE (03) HOURS

INSTRUCTIONS

- Question paper consists of eight questions. Answer only five questions.
- All questions carry equal marks.

Question 01

- (a) State the Thevenin's theorem and Norton's theorem.
- (b) i. Convert the following Thevenin equivalent circuit in figure Q1 (b-i) to Norton equivalent circuit.

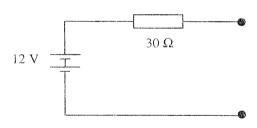


Figure Q1 (b-i)

ii. Convert the following figure Q1(b-ii) Norton equivalent circuit into a Thevenin equivalent circuit.

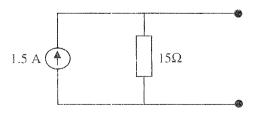


Figure Q1 (b-ii)

- (c) Following figure Q1(c) represents a two port network consisting of two voltage sources and three linear resistors. (r_1 and r_2 are the internal impedances of the voltage sources and R_L is load resistance)
 - i. Find the Thevenin equivalent circuit.
 - ii. Find the Norton equivalent circuit.
 - iii. Using Thevenin's theorem find an expression for the current through the load resistor \mathbf{R}_{L} .

(b)

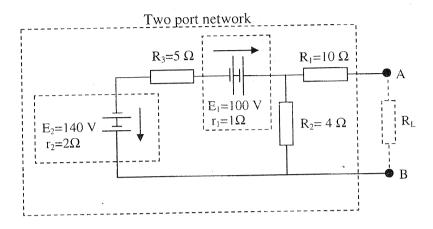


Figure Q1(c)

(d) A delta connected source has voltages given by

$$V_{ab}=1000\angle 30^0$$
 $V_{bc}=1000\angle -90^0$ $V_{ca}=1000\angle 150^0$

This source is connected to a delta connected load consisting of 50Ω resistances. Find the line currents and the power delivered to the load.

Question 02

(a) Find R_{load} for maximum power dissipation in the circuit shown in figure Q2 (a).

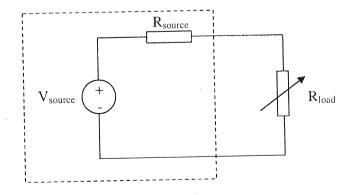


Figure Q2 (a)

Page 2 of 6

(b) In the following figure Q2 (b), the source is connected to the RC circuit by a switch that closes at t=0.Assume that initial voltage across the capacitor just before the switch closes is V_c (0.) = 0.Find the voltage across the capacitor as a function of time. (*Hint:* Apply KCL for node A)

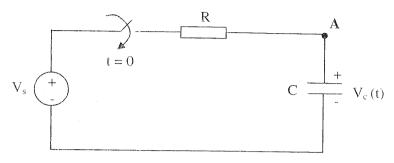
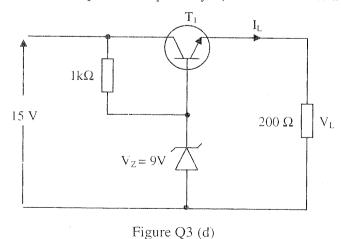



Figure Q2 (b)

- (c) Calculate V_c when t=0, RC, 2RC, 3RC, 4RC, 5RC. Give your comments about the voltage across the capacitor when t=5RC.
- (d) A series combination having $R = 2M\Omega$ and $C = 0.02\mu F$ is connected across a DC voltage source of 100V. Determine,
 - i. Time constant of the circuit
 - ii. Capacitor voltage after 0.02 s,0.1 s and 2 hours
 - iii. Charging current after 0.02 s,0.04 s and 0.1 s

Question 03

- (a) Draw a circuit symbol of a diode and a zener diode.
- (b) What are the full wave rectification methods, explain it using circuit diagrams.
- (c) List the biasing techniques of a transistor.
- (d) Following figure Q3 (d) shows the emitter follower regulation circuit. Calculate the values of V_L , I_L , V_{CE} and power dissipated by T_1 . Assume that the transistor is Si.

Page 3 of 6

Question 04

- (a) Write down the three BJT configurations, and draw circuit diagrams to show each of them using a npn transistor.
- (b) Draw the input and output characteristics of a BJT for CE configuration.
- (c) List three applications of a transistor and briefly explain each of them.
- (d) Consider the common emitter transistor amplifier as shown in figure Q4 (d). Where: V_{CC} =12V, V_{BE} = 0.6V, R_1 =15k Ω , R_2 = 2.7k Ω , R_C = 1k Ω , R_E = 220 Ω , β = 100
 - i. Using Thevenin's equivalent circuit, calculate the quiescent voltages and currents.
 - ii. Is this amplifier non-inverting or inverting?
 - iii. Find the small signal mid band voltage gain.

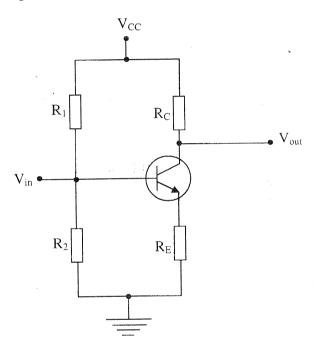


Figure Q4 (d)

Question 05

- (a) List four characteristics of an ideal operational amplifier (Op-Amp). Compare the ideal values with its typical values.
- (b) Explain following terms of an operational amplifier
 - i. Input bias current
 - ii. Output offset voltage
 - iii. Common Mode Rejection Ratio (CMRR)
 - iv. Slew rate.

- (c)
- i. What are the benefits of **negative feedback** (Degenerative feedback) in an Op-Amp circuit?
- ii. Why is it necessary to reduce the gain of an op-amp from its open loop gain?
- iii. What do you mean by the term "Virtual ground"?
- iv. Derive an equation for the closed loop voltage gain for a non-inverting amplifier.
- v. What is a voltage follower? Explain it using a circuit diagram and find the voltage gain of it?
- (d) Determine an expression for the output voltage V_{out} in the circuit shown in figure Q5 (d). Assume that the operational amplifier is ideal.

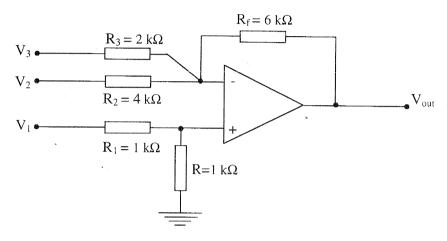


Figure Q5 (d)

If $V_2=3V$ and $V_3=2V$, then find the value of V_1 to get $V_{out}=0$ V.

Question 06

Explain the following terms using diagrams and mention one application for each of them.

- i. SCR
- ii. LDR
- iii. Triac
- iv. Opto coupler
- v. Thermo couple

Question 07

- (a) i. Convert 100011112 to Octal and Hexadecimal
 - ii. Represent -96₁₀ in
 - a. Sign magnitude method
 - b. 1's compliment method
 - c. 2's compliment method

- (b) i. State De Morgan's theorem for two Boolean variables A and B.
 - ii. Define the following 2-input device.
 - a. NAND gate
 - b. Exclusive OR gate
 - iii. Realize an Exclusive OR gate using only NAND gates.
- (c) Simplify the following logic functions using Boolean algebra.

i.
$$\overline{AC} + \overline{BC} + \overline{ABC} + ABC$$

ii.
$$\overrightarrow{ABD} + \overrightarrow{ABCD} + \overrightarrow{ABCD} + \overrightarrow{ABD} + \overrightarrow{ABCD}$$

- (d) A, B, C, D are four inputs of a circuit, representing binary values from 0000 to 1111 (i.e. 0 to 15). The input A is MSB and D is LSB. The out put of the circuit (F) is **true**, if the input is divisible by 4, 5, 6 or 7 with the exception of 15, otherwise the output is **false**. Assume that zero is not divisible by any number.
 - i. Write the Boolean expression for the output (F) and simplify it using Karnaugh map, Show the steps very clearly.

TI

FA

 \mathbf{D}

 \mathbf{F}

N

L 1

1

ii. Design a circuit using logic gates (OR, AND and NOT) to carry out the function.

Question 08

- (a) Explain briefly the terms "Combinational-logic" and "Sequential-logic".
- (b) Define,
 - i. JK edge-triggered Flip-Flop
 - ii. SR edge-triggered Flip-Flop
 - iii. Construct D edge-triggered Flip-Flop using a JK Flip-Flop and a NOT gate.

Give circuit diagrams, truth tables for each of them

- (c) i. What is the,
 - a. Resolution,
 - b. Full scale error,
 - c. Linearity error, of a DAC (Digital to Analog Converter)
 - ii. Give three applications of a DAC.
 - iii. A 4-bit weighted resistor DAC has a V_{ref} = 12V and a feedback resistor (R_f) = R. Find the resolution and the full scale analog output current.
- (d) Design a 3-bit **Gray Code** synchronous counter using JK Flip-Flop and logic gates. You have to show the state diagram, state table, K-map, logic expressions and the circuit implementation very clearly.

All Rights Reserved