THE OPEN UNIVERSITY OF SRI LANKA
BACHELOR OF SOFTWARE ENGINEERING /
DIPLOMA IN TECHNOLOGY – LEVEL 04
FINAL EXAMINATION – 2010/2011
MPZ 4140/MPZ 4160 - DISCRETE MATHEMATICS I

DURATION - THREE (03) HOURS

-	Index No
DATE: 07 th March 2011	TIME: 9.30 –12.30 hours

Instructions:

- Answer only six questions.
- State any assumption that you required.
- Show all your workings.
- Please answer a total of six equations choosing at least one from each single section.

SECTION - A

- 01. i. Which of the following statement are proposition? What are their truth values?
 - a) 3+3=6
 - b) It will rain tomorrow
 - c) Solve the following equation for x.
 - d) The number 7
 - e) 3 is an odd number and $Sin \frac{\pi}{6} = \frac{1}{\sqrt{2}}$
 - Construct the truth table for each of the following statements.

a)
$$[(p \Rightarrow q) \land (p \Rightarrow r)] \Rightarrow (q \Rightarrow r)$$

b)
$$[p \Rightarrow (q \Rightarrow r)] \Rightarrow [(p \land q) \Rightarrow r]$$

iii. Let
$$p,q,r$$
 be 3 statements. Show that $[(p \Rightarrow q) \land (p \Rightarrow r)] \Leftrightarrow [p \Rightarrow (q \land r)]$ is a tautology.

- iv. Use the laws of the algebra of proposition to show that
 - a) $\neg (p \lor q) \lor (\neg p \land q) \equiv \neg p$
 - b) $\neg (p \land q) \land p \equiv (\neg q \land p)$
- 02. i. Give the converse and contrapositive of the statement "If you earn an A in logic, then I will buy you a new car".
 - ii. Test the validity of the following arguments.
 - a) "If 7 is less than 4, then 7 is not a prime number. 7 is not less than4. Therefore 7 is a prime number".
 - b) "If it rains, then Pasindu will be sick. Pasindu was not sick. Therefore it did not rain.
 - iii. Give counter examples to prove the following existential statements.
 - a) $\exists x \in \mathbb{R}, x^3 + x^2 2 = 0$
 - b) $\exists r \in Q$, $Sin(\pi r) = \frac{1}{2}$, where Q is the set of all rational numbers.
 - iv. Prove that the following statement is false.

 $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x-y^2 = 15$

- 03. i. Using the mathematical induction prove that $f(n) = n(n^2 + 5)$ is divisible by 6 for all positive integer n.
 - ii. Write the statement: "Every student is hardworking or lucky passes exam" in predicate logic.
 - iii. Prove that, if n^2 is an even integer then n is an even integer. (Use the contra positive of this statement)
 - iv. Prove or disprove the following statement.

"The sum of any conseative integer is drivable by 5"

SECTION - B

- 04. i. Write following sets in a set-builder form.
 - a) $A = \{1, 3, 5, 7, \dots\}$
 - b) $B = \{c, o, r, e, t\}$
 - ii. Let $A = \{r, s, t, u, v, w\}$, $B = \{u, v, w, x, y, z\}$, $C = \{s, u, y, z\}$, $d = \{u, v\}$, $e = \{s, u\}$ and $F = \{s\}$. Let X be an unknown set. Determine which sets A,B,C,D,E or F can equal X if we are given the following information.
 - a) $X \subset A$ and $X \subset B$
 - b) $X \not\subset A$ and $X \not\subset C$
 - iii. Find power set of set $G = \{5, \{2, 7\}\}$
 - iv. Without using venn diagram, show that $(A \cup B)' = A' \cap B'$
 - v. Let $A = \{a, b, c, d, e, f\}$, $B = \{d, e, f, g, h, i\}$, $C = \{b, c, e, g, h\}$ Find $(A \oplus B) \oplus (B \oplus C)$
- 05. i. a) Define a composition of function.
 - b) Let $f(x) = \begin{cases} 2x^2 & ; x \ge 0 \\ x+6 & ; x < 0 \end{cases}$ and

$$g(x) = x + 3, \quad x \in R.$$

Find fog(x) and gof(x)

- ii. Let $A = \{a, b\}$, $B = \{1, 2, 3\}$ find $A \times B$ and A^3
- iii. Prove $(A \times B) \cap (A \times C) = A \times (B \cap C)$

06. i. Let R be the relation on
$$A = \{1, 2, 3, 4\}$$
 defined by $R = \{(1,1), (2,2), (2,3), (3,2), (4,2), (4,4)\}$

Show that

- a) R is neither reflexive, nor transitive
- b) R is neither symmetric, nor antisymmetric.
- ii. Give the example of relation R_1 on $B = \{1, 2, 3\}$ having the stated property: R_1 is both symmetric and antisymmetric.
- iii. Let A be a set of integers and let \sim be the relation of A x A defined by $(a, b) \sim (c, d)$ if ad = bc. Prove that \sim is an equivalence relation.
- iv. Define a partial order on a set X. X is a non empty set and Y = p(x) is the power set. (i.e the set of all subject of X). For $A, B \in Y$, the relation R is defined by

 $ARB \Leftrightarrow A \subseteq B$

Prove that R is a partial order on Y.

SECTION - C

- 07. i. Show that if a|b and b|a the $a = \pm b$
 - ii. Let gcd (a,b)=1, prove that $gcd (a + b, a^2 ab + b^2) = 1 \text{ or } 3$
 - iii. Define a prime number.
 - a) If $n \ge 5$ is a prime number, show that $n^2 + 2$ is not a prime.
 - b) If $b(b \ne 2)$ is a prime number, show that $b^2 + (b + 2)^2 + (b + 4)^2 + 1$ is divisible by 12.
- 08. i. Define greatest common divisor (gcd) and least common multiplier (lcm)
 - ii. Find gcd (198, 372, 510)
 - iii. Determine integers x and y such that

$$gcd(427, 3078) = 427x + 3078 y$$

Hence give the general solution of the above equation in integers x and y.

- 09. i. Prove that
 - a) If $\equiv b \pmod{m}$ then $a+c \equiv b+c \pmod{m}$ and $ac \equiv bc \pmod{m}$
 - b) $ak \equiv bk \pmod{m}$ then $a \equiv b \left[\mod \frac{m}{(k,m)} \right]$
 - c) $a \equiv b \pmod{m}$, $b \equiv a \pmod{m}$ and $(a-b) \equiv o \pmod{m}$ are equivalent statements.
 - ii. Solve the following set of congruence simultaneously (Chinese Remainder Theorem)

$$x \equiv 1 \pmod{3}$$

$$x \equiv 2 \pmod{5}$$

$$x \equiv 1 \pmod{7}$$

$$x \equiv 3 \pmod{11}$$

- Copyrights reserved -