The Open University of Sri Lanka Department of Electrical and Computer Engineering Final Examination 2005 / 2006 ECD2203 – Line Communications

Time: 1330 - 1630 hrs.

Date: 2006-05 - 16

Answer any FIVE questions

1.

signal

(a) Consider the filter given in fig.1

- (i) If v_{in} is pure sinusoidal write an expression for the transfer function of the signal. Name the type of the filter. Justify your answer.
- (ii) Draw the frequency characteristics of the filter. Derive an expression / expressions for cutoff frequency / frequencies.
- (iii) What is the bandwidth of the filter?
- (b) Sketch the output frequency characteristics of the above filter if a rectangular pulse is applied at the input (pulse width = RC).
- 2.
- (a) Design a Bridged –T null network to following specifications:

$$\omega = 2 \times 10^4 \text{ radians / s}$$
 Q of the inductance $L_s = 100$ R = 1 k Ω

(b) Design a L-network to match the impedances $R_s = 220 \Omega$, $R_L = 110 \Omega$.

- ٠ 3.
- (a) Briefly explain the design principle of an equalizer (e.g. for a open wire section).
- (b) It is necessary to design an equalizer for a transmission cable whose transfer function is expressed by

$$F(\omega) = \frac{1}{\sqrt{1 + \left(\frac{\omega}{\omega_0}\right)}}$$

(i) Find the approximate value of $F(\omega)$ when

$$(\alpha) \left(\frac{\omega}{\omega_0}\right) <<1 \quad (\beta) \left(\frac{\omega}{\omega_0}\right) =1 \quad (\gamma) \left(\frac{\omega}{\omega_0}\right) >>1$$

- (ii) Find the approximate value of $10\log(F(\omega))$ for $\frac{\omega}{\omega_0} = 0.1$, 10, 100, 1000, 10000 and 100000
- (iii) Find the slope of $F(\omega)$ in dB / octave (change of $F(\omega)$ in dB when $\left(\frac{\omega}{\omega_0}\right)$ is increased by a factor 10) for larger $\left(\frac{\omega}{\omega_0}\right)$ values.
- (iv) If the overall loss (cable loss + equalizer loss) to be approximated to 0 dB, give the loss characteristics of the equalizer.
- 4.
- (a) Explain how line faults in a line can be located.
- (b) The oscilloscope display of a pulse-echo test is shown in fig.4.

(i) Does the line act as a low pass filter or a high pass filter? Justify your answer using Fig.4.

- (ii) How many line faults are there? Locate the fault distance(s).

 (Assume that the generator frequency is 10 kHz and the phase constant is 0.03 radians per kilo meter)
- 5.(a) The phase constant β of a certain transmission line of length d is related to its' source frequency as follows:

$$\beta(\omega) = \sqrt{\frac{\omega^2 + a}{2}}$$
 where ω is the angular frequency and a is

constant.

Find the group velocity (v_g) of the line.

- (b) \bar{A} voltage source E $\cos(\omega t)$ is applied to the input of a transmission line whose attenuation constant and the phase constant are α and β respectively.
 - (i) Write down an expression for the propagation constant (γ) .
 - (ii) Write down an expression for the voltage level at a distance d.

6.

The operating frequency of a 150 km long transmission line is100 MHz. Line parameters are as follows:

$$R = 10 \Omega \text{ km}^{-1}; L = 2 \text{ mH km}^{-1}; G = 2 \Omega^{-1} \text{ km}^{-1}; C = 10 \text{ nF km}^{-1};$$

If a sinusoidal source is connected to the line input, calculate:

- (i) the characteristic impedance (Z_0) of the line.
- (ii) the attenuation constant(α) and the phase constant (β).
- (iii) the phase velocity v_p .
- (iv) wavelength λ.
- (v) sending end current $I_{S.}$
- (vi) receiving end current I_R and its' phase relative to the sending end current.
- (vii) reflection coefficient of the line.
- (viii) Voltage Standing Wave Ratio (VSWR) of the line.

- 7.
- (a) Draw a schematic diagram of a TV receiver and briefly explain the function of each block.
- (b) Explain the principle of Time Division Multiplexing (TDM).
- (c) Four telephone channels (each 4 kHz bandwidth) are to be transmitted over a line in such a way that the line bandwidth is minimally utilized.

Describe how this is done using FDM. Give the values of the sub-carriers used in the modulation process.

- **8**. Briefly explain the following:
- (a) Group velocity of an e.m. wave.
- (b) Cross talk in O / W lines.
- (c) Time Division Multiplexing (TDM)
- (d) Pulse Width Modulation (PWM)
- (e) Use of Eye patterns in PCM