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The Open University of Sri Lanka

ECD 2216 Digital Computer Simulation
saturday 18" March 2006, Time: 0930 hrs. — 1230 hrs.

045

Three hours

Up Lo five questions may be attempted, selecling at least two questions from each section. However,
full credit may be obtained for exceptionally good answers to only four questions. All questions carry
equal marks. :

Section A

1. Examine the roots of the following transfer functions and hence determine whether the filters
represented by them are stable:
o178z —1)
ii. 2%/ (2% +2z+1)
ii. 2/@ -z-2)
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Examine the digital filter shown in the figure.
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a. Does it represent a recursive filter or a non-recursive filter? Give reasons for your
answer, .
b.  Write down the z transform representation of the filter.
c. Determine whether it is stable.
A non-recursive digital filter has an impulse response {1,2,1}, and is excited by an input
sequence {1,-1,1}. Use the Discrete Fourier Transform to obtain the output sequence of the
filter. How would you modify these sequences if you were 1o use the Fast Fourier Transform?

State the Sampling Theorem. What is meant by “aliasing™ or “frequency folding™? Explain,

using frequency density specira where necessary, how a low pass filler may be used to
recover a continuous signal from a properly sampled signal.
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Section B

Read the note on "Approximating analog filters™ reproduced at the end of this paper before you
answer questions 5 to 8. Unfortunately, you will not be able to view the demos referred to in the (e i

5. The paper describes three techniques for oblaining a discrete filter from an analog filter.
Which of them generates a FIR filler? Give reasons for your answer. :

6. “Analog fillers are usually described by either their impulse response or their differential
equation. Digital filters are typically described by either their impulse response or their
difference equation.”

Which of the three techniques described in the note attempts to obtain a digital fitter by
matching of impulse responses, and which attempts to do so by matehing the differential
equation to a corresponding difference equation?

7. The maopinas of the s blane to the z plane in the three methods are given by:
a. z=e"™ or s=is*In(z)
b. s=(1-z")*fs
c. s=2fs(i-z"y(1+z") .

State the locus on the z plane, of poles on the imaginary axis of the s plane, for each of the
transformations. '

8. Sketch three simple flow diagrams to illustrate the recommended procedure for obtaining a:
digital filter, in the three techniques. ’
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Approximating Ana

]

There are many ways to convert analog fillers such as Butterworth, Chebychev, and Elliptic into digital
filters. None of the conversion methods are oplimal, none of the methods are perfect, none of the
methods are optimal, and none of the methods produce identical results. The three major iechniques
are:

+ Impulse Invarance - Windowing Method
» Derivative Approximation
= Integral Approximation - Bilinear Z transiorm

Impulse Invariance - Windowing Method
This analog-filter to digital-filler conversion process is based on a simple and intuitively pleasing idea:

If the impulse respense of the digital-fiter.-hn]; looks like a sampled version-of the impulse
response of the analog filter, hft), then the two filfers should do equivalent things fo the input signal.

While this statement is approximately true, it is not exactly correct. There are some problems with this
approach that iimit where it is used. To see these probiems, go back and review the material on FIR
filter design using weighting windows. When using this technique to design fillers we:

Find an equation for the impulse response of a good, or even optimal, analog fiiter
Sample the impulse response at fs samples/second

Truncate the impulse response to make it finite length

Multiply by some smooth weighiing window .

Fourier Transform the impuise response to see how close il came to ideal

. Modify steps 3 and/or 4 to get a better impulse response if needed.

DoawN

The impulse response of most ideal filters (ideal low pass, ideal bandpass, ideal notch). and most
standard fitters (Butterworth, Chebychev, Elliptic) extend to t=+infinity, and some times to t=-infinity. If
we use a FIR digital filter, we will have to truncate the signal, and this will lead to distortion. This
distortion rounded off sharp transitions and caused side lobes. Weighting windows let us trade-off
these two types of distortion. : C

Sometimes, we can design {IR filters using this technique. A simple example is a simple R/C low pass
filter. This fiter has an impulse response that is a decaying exponential. We can generate samples of
this impuise response by using a first order |IR digital filter. There is no distortion due to windowing,
because the impulse response of the digital filter goes out to n=infinity, just as the impulse response
of the analog filtter went out to t=infinity. In many cases it will be very difficult or impossible to find the
correct feedback coefficients to make this work.

Even if we get lucky, and find the right feedback coefficients to avoid windowing problems, these
digital filters still distort the signal. The problem is with the sampling rate of the impulse response. The
sampling frequency of the impulse response, h(t), matches the sampling frequency of the input signal,
x(t). We always assume x(t) has no power above fh Hz, and we set the sampling rate to be at least
2th. For the digital filter to be ideal, we must make sure that fs is also greater than two limes the
highest frequency in h(t). Unfortunately, all of the standard analog filters have H(f) that extend to f=t/-
infinity, so we will always have aliasing problems when sampling h(t). . .

To see how this technique works for an R/C lowpass filter, run script demo0807.m. As promised, the
digital impulse response exactly matches the analog impulse response.

At low frequencies, these two filters look identical, bul aliasing becomes a probiem close to the
Nyquist frequency. It is common for these filters to pull away from the ideal response in this way
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The phase response shows even a more dramatic deviation from the ideal response at high

. frequenmes The phase must get back to zero degrees at the Nyquist frequency, since the spectru
must bﬂ conjugate symmetric about both DC and fsf2.
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Many times we would like to see how a mapping like impulse invariance moves poles/zeros from th
S plane to the Z plane From the discussion on Ztransforms we see that the Laplace transom

integrates x(tye™ whlle the Z transform sums x[n}z”". The two transforms look similar if we use the
substitution z=e*™ or s=fs*In(z). The script demo0806.m allows the user o add poles and zeros to the
S plane and see how they are mapped to the Z plane. Nofice that Stable analog filters (poles in left
half plane) will be mapped to stable digital filters (poles inside unit circle).

f . Poles close to the imaginary axis in the S plane at frequency 1 (fi ilters with high gain at f1), will be

mapped to poles close to the unit circle in the. Z plane at frequency f1 (f ilters with high gain at f1)
. The rule given above only applies when f1 is between DC and fs/2. For higher frequencies ahasmg
: : " occurs (the pole shows up in the Z plane at frequency f1-fs, or f1-2fs, or f1-3fs, or...)
T

Derivative Approximation

; Digital filters are typically described by either their impulse response or their difference equation. Th
' impulse Invariant design tried to translate analog filters to digital fitters by maiching impulse

responses. The derivative approximation tries to transiate the fitters by malching the differential
equation to the difference equation.

‘ " Analog filters are usually described by either their impulse response or their differential equation.
!

!

Earlier we saw how the derivative could be approximated by a finite difference: d/d{ x(t) is
approximalely equal 1o the finite difference (x[n]-x[n-1})*{s = rise/run. The Laplace transform of d/dt of

x(l) is sX(s). The Z transform of (x[n]-x[n-1])*fs is (1-z" }*{s*X(z). From here we can see that one way
to approximate a filler is to:
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Find impuise response, h(l), for analog filler
Find transfer function, H(s}, for analog filter
Use the substitution s=(1-z"")*fs to find H(z)
Build a digital filter with the specified H(z)

This technigue will usually generate a different filter than the impulse invariant design. Script---
demp0803.m shows how the impulse invariant and d/dt approximation filter compare. Both do a good
job ai iow frequencies, but deviaie from ideal near the Nyquisi rate.

The impulse invariant design suffers from aliasing, bul the d/dt approximation design has a different
lype of distortion. To see the effects of this distortion, look at the mapping of poies and zeros from the

s plane to the 2 plane. Script demo0806.m may help you visualize this transformation. Notice the
following:

Poles on the imaginary axis of the S plane get mapped to a circle of radius 1/2 centered at
112,

= As anglog frequency ranges from DC o infinity, the points in the Z plane move from 110 0 -
~ there is no aliasing.
» Poles near s=0 get mapped to poles near z=0, at the correot frequencies. Poles far from s=0
all get moved to the wrong frequencies and all end up near z=0.
= Slable analog filters generate stable digital filters.
= Some unstable analog filters generate stable digital filters

Derivative approximation only works well when the finite difference is very close to the true derivative.

This will only be true when the sampling rate is 10 to 100 times as high as required by the Nyquist
theorem. .

Integral Approximation / Bilinear Z Transform

Since the derivative approxirnation is such-a lousy way to translaie analog filters to digital filters,
people kept looking for better ways. A better method was discovered simuttaneously by Dr.s Biliano
and Chzefnear, and is now known as the Biflano-Chzefnear, or Bilinear, transform. This lechnique is
very similar to the d/dt approximation, only now we focus on estimating the integration operation.
Recall that the LT of the integral of x(t} is X(s)/s. A digital integrator that performs trapezoidal
integration keeps a running total of the mput signal, so it has the transfer function y[n]=y[n-11+x[n)/fs.
This leads to the transfer function Y(@)=z Y (z)+X(z)/fs, or H(z)=1/fs(1-z™"). This leads us to the
transtation of s=fs(1-z""). But there is a better way to perform mtegratlon namely trapezoidal
integration. In this technlque y[nl=y[n-1]+{x[n}+x[n-1])/2fs, so H(z)=(1+z ")/ 2fs(1-z""}, leading o the
transformation s=2fs(1-z")/(1+2""). Although this is very similar to the d/dt approximation, it produces
much betier digital filters. When you ask a computer tool like Matlab to design a filter, it uses this
technique. Script demo0803.m shows how the impulse invariant, d/dt approximation and Bilinear
transform compare for a first order low pass filter. Notice that unlike all other filters, the Bilinear filler
gein goes 1o 0 (- infinite dB) at the Nyquist frequency. You can see why this happens by looking at the
mapping of poles and zeros from the S plane to the Z plane in script demo0806.m. This
transformation is a mix of the previous two.

Similar to the impulse invariant design, the imaginary axis in the S plane gets mapped to the unit
circle in the Z plane.

= Similar to the impuise invariant design, stable analog filters are ' mapped to stable digital filters,
and unstable anatog filiers are mapped to unstabie digital tifters.

= Similarto the d/dt approximation - there is frequency warping, rather than frequency aliasing.
All analog frequencies from DC to infinity are mapped to the range DC to fs/2 in the digital
filter. High analog frequencies never 'alias’ and show up as low digital frequencies. The
mapping of analog to digital frequencies follows an arctangent curve. For zonal filters, people
usually prefer frequency warping to aliasing.
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