THE OPEN UNIVERSITY OF SRI LANKA

BACHELOR OF MANAGEMENT STUDIES DEGREE PROGRAMME

LEVEL 06 - ASSIGNMENT TEST 2015/16

OPERATION RESEARCH - MCU 4202

DURATION: TWO (02) HOURS

DATE: 27.09.2015

TIME: 10.00 am - 12.00 noon

ANSWER THREE QUESTIONS ONLY.

ALL QUESTIONS CARRY EQUAL MARKS.

(01) Four projects P₁, P₂, P₃ and P₄ are to be implemented. These projects could be implemented in any of the four locations L₁, L₂, L₃ or L₄. But the labor requirement would depend on the particular project and the location it is assigned, as shown in the table below.

Labor Requirement

	Lı	L ₂	L_3	L ₄
Pı	12	17	14	15
P ₂	7	6	8	9
P ₃	21	15	27	20
P ₄	15	11	17	18

- a) Find the optimal plan of assignment projects to location that would minimize the total labor requirement.
- b) Find the optimal plan of assigning project to locations given that project P₂ should not be assigned to location L₃.
- (02) A project consists of six activities, A, B, C, F whose precedence and durations are explained in the table below.

ACTIVITY	PRECEDENCE	DURATION (DAYS)
Α	Project Start	5
В	Project Start	6
C	After "A"	6
D	After "A"	8
В	After "B" and "D"	7
F.	After "C" and "E"	5

- (i) Construct the network.
- (ii) Time analyze and find the float of each activity.
- (iii) Name the critical path.
- (iv) Calculate EST, EFT, LFT and LST of each activity.
- (v) What is the earliest project completion time?
- (03) At a laboratory blood samples are received in a poisson fashion at the rate of 8 per hour. There is only one technologist who on the average takes 6 minutes to test one blood sample. The laboratory works 10 hours a day.
 - (i) How many hours does the technologist idle per day?
 - (ii) What is the probability that there are three blood samples at the laboratory?
 - (iii) On the average how many blood samples are there in the laboratory?
 - (iv) How long will a blood sample have to be kept at the laboratory?
 - (v) On the average how many blood samples are there waiting to be tested in the laboratory?
 - (vi) How long must a blood sample be kept until it is taken for testing?
 - (vii) Blood samples, as they are received are put in a freezer that has a capacity to hold 8 blood samples. If the freezer is full the sample is kept out side. What is a probability that a blood sample just received is kept outside the freezer?
- (04) Sanjeewa company has three factories A, B and C that turns out gas cookers. The weekly capacities of the factories A, B and C are 5000, 6000 and 2500 respectively. These cookers are transported to four distribution centers P, Q, R and S whose weekly demands are 6000, 4000, 2000 and 1500. The cost of transporting one unit from a given factory to a given distribution center is explained in the table below.

Cost of Installation (Rs. 000)

FACTORY	DISTRIBUTION CENTRE
	P Q R S
 A	3 2 7 6
В	7 5 2 3
C	2 5 4 5

Sanjeewa company wishes to develop the transportation plan that would minimize total cost of transport.

- (i) Find an initial feasible solution using north-west or least cost method.
- (ii) Solve the transportation problem using either MODI method or stepping stone method.

- (05) Write short notes on the following with suitable illustrations.
 - a) Critical Path
 - b) Balanced Transportation Problem
 - c) Limitations of Assignment Theory
 - d) North West Corner Rule Method
 - e) Advantages of graphical method and simplex method in solving Linear Programming problems

Formulae

- λ = Rate of arrival of units
- μ = Rate of service completion
- $\theta = \lambda/\mu$
- H = Number of working hours per day
- $P_{(n)}$ = Probability of "n" units in the queuing system
- L_s = Average number of units in queuing system
- L_q = Average number of units in queue
- W_s = Average time spent by units in queuing system
- W_q = Average time spent by units in queue
- $P(n) = \theta P(n-1) (1)$
- $P(n) = \theta^n P(0) (2)$
- $P(n) = \theta^n (1-\theta) (3)$
- (Probability that queuing system empty) = (1θ) (4)
- (Probability that the server is idle) = (1θ) (5)
- (Number of hours server idle per day) = $H(1 \theta)$ (5)
- $L_s = \theta/(1-\theta) (7)$
- $L_q = \theta^2/(1-\theta) (8)$
- $L_s = \lambda W_s (9)$
- $L_{q} = \lambda W_{q} (10)$