THE OPEN UNIVERSITY OF SRI LANKA

FACULTY OF ENGINEERING TECHNOLOGY

BACHELOR OF TECHNOLOGY - LEVEL 06

FINAL EXAMINATION - 2009

MEX6271 - ROBOTICS

DATE

30 MARCH 2010

TIME

1400HRS -1700HRS

DURATION

THREE HOURS

PLEASE READ THE FOLLOWING INSTRUCTIONS BEFORE ANSWERING THE PAPER

INSTRUCTIONS:

- 1. This paper consists of eight questions. Answer any five questions only.
- 2. Each question carries equal marks.
- 3. Answers should be written on the answer books provided by the Examinations Division.

Question 01

- (1.1) Write down a definition for a Robot. What makes a robot different from other forms of automated devices?
- (1.2) What distinguishes anthropomorphic robots from other forms of robots? Give examples and applications of the above-mentioned type of robots.
- (1.3) Explain briefly, the main types of movement necessary for obtaining the desired motion in an industrial robot
- (1.4) Briefly explain the main components of a robot manipulator system.

Question 02

- (2.1) What are the main types of robot configurations found in robotics based on physical configuration? Briefly explain any two of the mentioned configurations.
- (2.2) Taking suitable examples, distinguish between 'Effort Variables' and 'Flow Variables'.
- (2.3) What are the three (03) types of variants in a revolute joint? Explain each of these variants by using a neat sketch.
- (2.4) Describe TRL and TRR types of robots in the context of physical configuration of robotic manipulators. Discuss the advantages and disadvantages of each of the above-mentioned configurations

Question 03

- (3.1) Lead-through mode and Walk-through mode are two different methods commonly used in programming a robot. Explain these two methods of programming.
- (3.2) Redundant manipulators are not commonly used in industrial applications. Explain what is meant by a 'redundant manipulator' and elaborate on the above statement.
- (3.3) Explain the term 'payload' with respect to a robots load carrying capacity. Why is the payload very much less than the robot's maximum load carrying capacity?
- (3.4) Define the term 'dexterity' in the context of robot movement.

Question 04

- (4.1) Using the standard notations find the representation of a point P described in frame {2}, with respect to a frame {1}. Note that frame {2} has been rotated about a fixed origin with respect to frame {1}.
- (4.2) Explain the mathematical meaning of the term 'rotation matrix'.
- (4.3) Using the answer obtained in (4.1) or otherwise, deduce the following relationships with regard to the rotation matrix ${\bf R}$

(a)
$${}^{2}\mathbf{R}_{1} = \left[{}^{1}\mathbf{R}_{2}\right]^{T}$$

$$\mathbf{(b)} = {}^{2}\mathbf{R}_{1} = \left[{}^{1}\mathbf{R}_{2}\right]^{-1}$$

Question 05

- (5.1) A homogeneous coordinate vector is given by $\mathbf{A} = \begin{bmatrix} 10 & -4 & 6 & 2 \end{bmatrix}^T$. Find the Cartesian coordinate vector for the homogeneous coordinate vector \mathbf{A} .
- (5.2) Explain the mathematical meaning of the term 'basic homogenous matrix.
- (5.3) Frame {2} is rotated with respect to frame {1} about the X-axis by an angle of 30° . The position of the origin of frame {2} as seen from frame {1} is ${}^{1}\mathbf{D}_{2} = \begin{bmatrix} 7.0 & 5.0 & 7.0 \end{bmatrix}^{\mathrm{T}}.$
 - (a) Obtain the transformation matrix ¹T,
 - (b) Find the description of a point P in frame {1} if ${}^{2}P = \begin{bmatrix} 2.0 & 4.0 & 6.0 \end{bmatrix}^{T}$

Question 06

(6.1) 'The rotational matrix $\mathbf{R}(\theta)$ which rotates a vector through some angle θ about a k-axis, is the same as the rotational transformation matrix, which describes any frame rotated by θ relative to the reference frame'. Comment on the statement using your knowledge in frame transformations.

- (6.2) Consider the following transformations of a point P in 3-D space. The point P is rotated by an angle 45^0 about z-axis and then translated it by -1 unit along x-axis and -2 units along z-axis.
 - (a) Determine the new location of the point P after the transformations.
 - (b) Show the transformation of the vector pictorially.

Question 07

(7.1) Using first principles and standard notations prove the following relationship with regard to homogeneous transformations.

$${}^{2}\mathbf{T}_{1} = \begin{bmatrix} {}^{1}\mathbf{T}_{2} \end{bmatrix}^{-1} = \begin{bmatrix} {}^{1}\mathbf{R}^{\mathsf{T}}_{2} & -\mathbf{R}^{\mathsf{T}}_{2} \\ \hline 0 & 0 \end{bmatrix} \begin{bmatrix} -{}^{1}\mathbf{R}^{\mathsf{T}}_{2} & \mathbf{D}_{2} \\ \hline 1 \end{bmatrix}$$

(7.2) Frame {2} is rotated with respect to frame {1} about the X-axis by an angle of 60°. The position of the origin of frame {2} as seen from frame {1} is,

$$^{1}\mathbf{D}_{2} = \begin{bmatrix} 7.0 & 5.0 & 7.0 \end{bmatrix}^{\mathrm{T}}.$$

- (a) Find the homogeneous transformation matrix which describes the position and orientation frame {2} relative to frame {1}.
- (b) Using the relationship in (7.1) find the transformation matrix which describes the position and orientation of frame {1} relative to frame {2}

Question 08

- (8.1) A frame is given two rotations, one about x-axis by 60° and one about y-axis by 45° . Show that $\mathbf{R}_x \mathbf{R}_y \neq \mathbf{R}_y \mathbf{R}_x$ and explain the reasons for the result.
- (8.2) Determine the orientation matrix for,
 - (a) ZXZ fixed angle rotations.
 - (b) ZXZ Euler angle rotations.