- (2) A self-service store employs one cashier at its counter. Nine customers arrive, on an average, every 5 minutes while the cashier can serve 10 customers in 5 minutes. By assuming Poisson distribution for arrival rate and exponential distribution for service rate, find
 - (i) the probability that a customer arriving at the store will have to wait.
 - (ii) the average length of the queue that forms.
 - (iii) the average time a customer spends in the system.
 - (iv) the probability that there will be three or more customers waiting for the service.
 - (v) the fraction of the time that there are no customers.

Formulas (in the usual notation)

$(M/M/1):(\infty/FIFO) & (M/M/1):(\infty/SIRO) Queuing Systems$

$$P_n = \left(\frac{\lambda}{\mu}\right)^n \left(1 - \frac{\lambda}{\mu}\right) \qquad P(\text{queue size} \ge n) = \rho^n$$

$$E(n) = \frac{\lambda}{\mu - \lambda}$$

$$E(m) \frac{\lambda^2}{\mu(\mu - \lambda)}$$

$$E(w) = \frac{\lambda}{\mu(\mu - \lambda)}$$

$$E(v) = \frac{1}{\mu - \lambda}$$

THE OPEN UNIVERSITY OF SRI LANKA

B.Sc. /B.Ed. DEGREE PROGRAMME

APPLIED MATHEMATICS-LEVEL 05

ADU5304 - OPERATIONAL RESEARCH

OPEN BOOK TEST 2017/2018

Duration: One Hour

Date: 12.01.2019 Time: 04.00 p.m- 05.00 p.m

Answer all questions

(1) Part A

There are two players in a game, say player A and player B. Player A has Rs.2 coin and Rs.5 coin, and player B has Rs.1 coin and Rs.10 coin. Each player selects a coin from the other player without knowing what coin the other player has selected. If the total rupees of the coins selected is odd, player A gets a payoff worth of two coins that were selected, but if the total is even, player B gets a payoff worth of the two coins.

- (i) Construct the payoff matrix with respect to the player A.
- (ii) Is there a saddle point? Justify your answer.
- (iii) Determine the optimal strategies for player A and player B.
- (iv) Find the value of the game.

Part B

Determine the ranges of values of λ and μ that will make the position (2, 2) a saddle point for the game having the payoff matrix given below:

		Player B		
•		B_{I}	B_2	B_3
Player A	A_I	1	3	5
	$\overline{A_2}$	8	4	λ
,	A_3	2	μ	9

