

THE OPEN UNIVERSITY OF SRI LANKA
B.Sc./B.Ed. Degree Programme, Continuing Education Programme
APPLIED MATHEMATICS – LEVEL 05
ADU5305/ Statistical Inference
Open Book Test - 2017/2018

Duration: One Hour.

Date: 29-12-2018

Time: 9.00 a.m. to 10.00 a.m.

Non programmable calculators are permitted. Statistical tables are provided.

Answer all questions.

1.

Let $X_1, X_2, X_3, \ldots, X_n$ be a random sample from a distribution with density given by $f(x; \theta)$. Let $\hat{\theta}_1, \hat{\theta}_2, \hat{\theta}_3, \hat{\theta}_4$, are functions of $X_1, X_2, X_3, \ldots, X_n$. Suppose $\hat{\theta}_1, \hat{\theta}_2$ are consistent estimators for parameter θ , $\hat{\theta}_3$ unbiased estimator for parameter θ , $\hat{\theta}_4$, is the likelihood estimator for parameter θ and for large samples $MSE(\hat{\theta}_2) < MSE(\hat{\theta}_3)$. State whether the following statements are true or false. Justify your answer.

- (i) Always $E(\frac{\widehat{\theta_1} + \widehat{\theta_2}}{2}) = \theta$
- (ii) For large samples $Var(\hat{\theta}_2) < Var(\hat{\theta}_3)$
- (iii) Let $L(\theta)$ be the likelihood function of θ . $L(\hat{\theta}_4) < L(\hat{\theta}_1)$.
- (iv) $\hat{\theta}_3$ is not an accurate estimator for θ
- (v) For large samples $\hat{\theta}_2$ and $\hat{\theta}_4$ are accurate and precise estimators for θ .

(50 marks)

2.

A company that produces a certain electrical product claims that the life time X (in years) has the density function

$$f(x,\beta) = \beta exp(-\beta x)$$
 ; $\beta > 0$, $x > 0$

and the moment generating function of X is given by

$$M_X(t) = \frac{\beta}{\beta - t}; \quad t < \beta$$

Let X_1, X_2, \dots, X_n denote lifetimes of n randomly chosen products from the above population.

- (i) Show that the expected life time and variance of a randomly selected electrical product are β^{-1} and β^{-2} respectively.
- (ii) Derive Maximum likelihood estimator for expected life time of a randomly selected electrical product. Is the estimator derived by you an unbiased estimator for expected life time of a randomly selected electrical product? Justify your answer.
- (iii) Derive Maximum likelihood estimator for variance of a randomly selected electrical product.
- (iv) A sample drawn from the above distribution is given below. Estimate the expected life time and variance of a randomly selected electrical product using part (ii) and part (iii).

(v) Find the sample size necessary to estimate the expected life time of a randomly selected electrical product within error bound on six months with 95% confidence.

(50 marks)