The Open University of Sri Lanka Department of Mathematics B.Sc/ B.Ed Degree Programme No Book Test (NBT) - 2017/2018 Applied Mathematics— Level 05 ADU5308 — Graph Theory

DURATION: ONE HOUR

Date: 10 - 02 - 2019 Time: 4.00 p.m. - 5.00 p.m.

ANSWER ALL QUESTIONS. THE TOTAL MAXIMUM MARK ATTAINABLE IS 200 AND THE FINAL MARK WILL BE CONVERTED TO 100%.

01. Draw the digraph $D_1 = (V_1, A_1)$ whose adjacency list is given in the following table.

[15 Marks]

Vertex	Adjacent Vertices	Vertex	Adjacent Vertices	Vertex	Adjacent Vertices
t	W	v	t,z	X	y,w
u	x,t	w	z, v	у	v, x, z

- (a) Find the minimum length of each of the vertices
 - (i) from the vertex u,

[15 Marks]

(ii) to the vertex z, among all the walks in the digraph D_1 .

[15 Marks]

Hence, determine whether D_1 is *strong* or not.

[10 Marks]

(b) Let $D_2 = (V_1, A_2)$, where $A_2 = A_1 \cup \{(z, u)\}$. Show that D_2 is strong.

[15 Marks]

Is D_2 a tournament? Justify your answer.

[10 Marks]

- 02. Let $L(K_{1,3} + x)$ be the *line graph* of the graph $K_{1,3} + x$, where x is a *line incident* with two of the *points* having *degree* one in $K_{1,3}$.
 - (a) Without drawing the graph $L(K_{1,3} + x)$,
 - (i) determine the number of lines in $L(K_{1,3} + x)$,
 - (ii) find the *degree* of each of the *points* in $L(K_{1,3} + x)$.

[50 Marks]

(b) Draw $L(K_{1,3} + x)$ and $L^2(K_{1,3} + x)$. Hence, verify the results obtained in part (a).

[40 Marks]

(c) Show that $L(K_{1,3} + x)$ and $K_4 - y$ are isomorphic, where y is any line deleted from K_4 .

[20 Marks]

Hence, deduce that $K_4 - y$ is a line graph.

[10 Marks]

