The Open University of Sri Lanka B.Sc. Degree Programme Level 05 – NBT 2017/2018 Pure Mathematics PEU5300- Riemann Integration

Duration: 1 hour

Date: 10-02-2019

Time: 1.00pm- 2.00pm

Answer all Questions

Q1)

Let
$$f(x) = \begin{cases} 1 & x \in (0,1) \\ 4 & x = 0,1 \end{cases}$$
 and $g(x) = 2, x \in [0,1]$.

Show that $f(x) \le g(x)$ for each $x \in [0,1]$ but $\int_0^1 f(x) dx < \int_0^1 g(x) dx$.

Q2)

Let f be a bounded, increasing function on [a, b]. Prove that f is Riemann integrable on [a, b].

Deduce that the function $f(x) = \sin x$ is Riemann integrable on $[0, \pi/2]$. Determine $\int_0^{\pi/2} \sin x \, dx$ by finding the common value of U(f) and L(f).

Q3)

By assuming the theorem that "if $f:[a,b]\to\mathbb{R}$ is Riemann integrable, $g:[c,d]\to\mathbb{R}$ is continuous and $f([a,b])\subseteq [c,d]$, then the composition $g\circ f:[a,b]\to\mathbb{R}$ is Riemann integrable", deduce that if h is a Riemann integrable on [a,b] then |h| is Riemann integrable on [a,b].

By giving a counterexample show that |h| is Riemann integrable on [a, b] does not necessarily imply that h is Riemann integrable on [a, b].

