THE OPEN UNIVERSITY OF SRI LANKA FACULTY OF ENGINEERING TECHNOLOGY

LEVEL 4

FINAL EXAMINATION 2010/2011

MEX4271 – SENSORS AND ACTUATORS

DATE

: 1ST MARCH 2011

TIME

: 0930HRS TO 1230HRS

DURATION

: THREE HOURS [3 hrs]

READ THE FOLLOWING INSTRUCTIONS CAREFULLY BEFORE ANSWERING THE QUESTION PAPER

- This question paper has eight questions.
- Answer five questions only.

Ouestion 01:

- i. Discuss the main differences between the following two types of electronic temperature sensors:
 - a. Linear electronic temperature sensors
 - b. Thermistors
- ii. Describe the operation of a LVDT for measuring displacement. How is its operation dependent on position of the core?
- iii. Define the terms, mechanical loading and electrical loading, in the context of motion sensing.

Question 02:

- i. What are the parameters you have to consider when selecting sensors, and briefly explain each parameter.
- ii. Discuss two methods of linear position encoding. What advantages and disadvantages does each method have?
- ii. Distinguish between incremental encoding and absolute position measurement.

luestion 03:

- i. What is piezoelectric effect? Sketch the basic construction and explain the operating principle of piezoelectric sensor.
- ii. Discuss advantages and disadvantages of fibre optic sensor.
- iii. Explain the principle operation of the Hall Effect transducer.
- iv. Explain the principle operation of the Phyro-Electric transducer.

westion 04:

- i. Why are the brushes of a dc machine always placed at the neutral points?
- ii. Explain why the armature current of a shunt motor decreases as the motor accelerates.
- iii. A shunt motor rotating at 1500rpm is fed by a 120V source. The line current is 51A and shunt-field resistance is 120Ω . If the armature resistance is 0.1Ω , calculate the following
 - a. The current in the armature
 - b. The counter emf
 - c. The mechanical power developed by the motor

Question 05:

- i. Explain what happens to the rotor speed and rotor current when the mechanical load on an induction motor increases.
- ii. Give two advantages of a wound-rotor motor over a squirrel-cage motor.
- iii. A 3-phase induction motor having a nominal rating of 75kW and a synchronous speed of 1800 rpm connected to a 600V source. The two-wattmeter method shows a total power consumption of 70kW, are an ammeter indicates a line current of 78A. Precise measurements give a rotor speed of 1763rpm. I addition the following characteristics are known about the motor.

Stator iron losses $P_f = 2kW$

Windage and friction losses $P_v = 1.2kW$

Resistance between two stator terminals = 0.34Ω

Determine the following

- a. Power supplied to motor
- b. Rotor I^2R losses
- c. Mechanical power supplied to the load

Question 06:

- i. Describe the basic details of
 - a. A poppet valve
 - b. A shuttle valve
- ii. Draw the symbols of following valves
 - a. A pressure relief valve
 - b. A 2/2 valve which has actuators of a push-button and spring
 - c. A 4/2 valve
- iii. Design a pneumatic valve circuit to give the following sequence A+, followed by A- and the similarly followed by B+ and B-.

Question 07:

- i. What happens to the reluctance of a magnetic path
 - a. If its length is doubled
 - b. If the cross sectional area is doubled
- ii. A Uniform flux density of 1T is perpendicular to the plane of a five-turn circular coil of radius 10m Find the flux linking the coil and flux linkages. Suppose that the field is decreased to zero at a uniform rate in 1ms. Find the magnitude of the voltage induced in the coil.
- iii. The coil resistance of a 24V dc tubular solenoid coil specified as 37Ω at 20 °C. The coil is constructed by winding 2710 turns of solid copper wires onto the core. Determine
 - a. The mmf, amp-turns, of the coil when it is clod(20 °C)
 - b. The mmf, amp-turns, of the coil when it is hot(85 °C)

Question 08:

- i. What is the main use of a stepper motor?
- ii. Distinguish reluctance stepper motor and permanent magnet stepper motor.
- iii. Explain what is meant by half-step drive, full-step drive and micro-step drive of stepper motor.

-End-