The Open University of Sri Lanka B.Sc./B.Ed Degree Programme Pure Mathematics – Level 05 Final Examination-2009/2010 PMU3295/ PME5295- Ring Theory-Paper II

Duration: Two and Half Hours

Date: 15/06/2010

Time: 9.30am-12.00 noon

Answer Four Questions Only.

- 1. (a) (i) Let I be a proper ideal of the ring R. Then show that I is a prime ideal if and only if the quotient ring R/I is an integral domain.
 - (ii) Does the statement in part (i) hold if R is without the identity? Justify your answer.
 - (iii) What is the converse of the statement in part (i)? Is the converse of part (i) true? Justify your answer.
 - (b) State the correspondence theorem for rings.
- 2. (a) Show that in an integral domain R, any prime element p is irreducible.
 - (b) Show that in a principle ideal domain R, a non-zero element $p \in R$ is irreducible if and only if it is prime.
- 3. (a) State the definitions of
 - (i) nilpotent element
 - (ii) idempotent element of a ring R.
 - (b) Show that the only idempotents of a ring R having exactly one maximal ideal M are 0 and 1.
 - (c) If a and b are nilpotent elements of a commutative ring, show that a+b is also nilpotent. Give an example to show that this may fail if the ring is not commutative.

- 4. Define 'unique factorization domain'.
 - (a) Let p be an element of a Euclidean ring R, then show that p is irreducible if and only if p is prime.
 - (b) Let R be a unique factorization domain. Show that, for $a \in R$, a is irreducible if and only if a is prime.
- 5. (a) Define $N: \mathbb{Z}[i] \to \mathbb{Z}$ by $N(\alpha) = \alpha \overline{\alpha}$

where $\overline{\alpha}$ is the complex conjugate of α . Let $\alpha, \beta \in \mathbb{Z}[i]$. Then show that

- (i) $\alpha | \beta$ in $\mathbb{Z}[i]$ implies that $N(\alpha) | N(\beta)$ in \mathbb{Z} .
- (ii) α is a unit if and only if $N(\alpha) = 1$.
- (iii) $N(\alpha)$ is irreducible in \mathbb{Z} implies that α is irreducible in $\mathbb{Z}[i]$. Is the converse of part (a) true? Justify your answer.
- (b) Consider the ring $R = \mathbb{Z}\left[\sqrt{-3}\right] = \left\{a + ib\sqrt{3} \,\middle|\, a, b \in \mathbb{Z}\right\}.$

Prove that 2 is irreducible but not prime.

- 6. (a) State and prove the Euler-Fermat Theorem.
 - (b) Show that a commutative ring with identity is a field if and only if it has no non trivial ideals.
 - (c) Let f be a homomorphism from a field F into F'. Then show that either f is the trivial homomorphism or else f is one-to-one.