THE OPEN UNIVERSITY OF SRI LANKA

Faculty of Engineering Technology

441

Department of Mathematics & Philosophy of Engineering

Bachelor of Software Engineering Honors

Final Examination (2023/2024)

MHZ4256: Mathematics for Computing

Date:	21st Augu	st 2024 (Wednesday)	Time: 0930 hrs. – 1230 hrs.	
Instru	ections:			
•	• Answer six (06) questions by selecting at least one question from each of sections A, B			
	and C.			
•	This pape	er consists of nine (09) questions.		
•	All the sy	mbols are in standard notation unl	ess they are defined.	
		Secti	on – A	
Q1.	a). State	e whether each of the following star	tements is a proposition or not. Explain	15%
	the truth value of each.			
	i).	$\forall x \in \mathbb{R}^+ (x < -4 \Rightarrow x^3 = 1000)$		
	ii).	$\forall x \in \mathbb{R}(x = -y \Rightarrow x^2y = 1000)$).	
	iii).	The function $f(x) = cos x$, where	$x \in \mathbb{R}$, is a periodic function and π is an	
		even number.		
	b). Find	the converse, inverse and contrape	ositive propositions of the following	15%
	prop	oosition.		
	If th	e formula is correct, then the soluti	ons are correct.	
	c). Let	p and q be propositions.		55%
	i).	Construct one truth table for the p	ropositions $\neg p, p \lor q, (p \Rightarrow q)$,	
		$p \land q, \neg p \lor q \text{ and } p \Leftrightarrow q.$		
	ii).	Show that $p \Leftrightarrow q$ is a logical cons	sequence of $p \Rightarrow q, p \land q$ and $p \lor q$.	
		Show that $((p \Rightarrow q) \land (p \lor q))$:		
		. What is the relation between $p \Rightarrow$		
			g laws of the algebra of propositions, prove	15%
		$(p \lor q \lor r) \land (p \lor q \lor \neg r) \equiv p \lor q$		
	inat	A. d. M. d. d. m.	1	

Q2. a). Determine the truth values of the following statement and write down the negation of the following statement.

$$\forall x \in \mathbb{R} \ \exists y \in \mathbb{R} \left((|x| > |y|) \Rightarrow (x^2 > y^2) \right)$$

- b). Find the truth value of $(\forall x) (Q(x) \Rightarrow P(a, g(x)))$. Given that $D = \{0, 1\}, \ a = 1, \ g(0) = 1, \ g(1) = 0, \ Q(0) = F, \ Q(1) = T$ $P(0, 0) = T, \ P(0, 1) = T, \ P(1, 0) = F, \ P(1, 1) = T.$
- c). Using the method of direct proof, prove that for all $n \in \mathbb{Z}$, if 7n + 9 is even, then n is odd.
- d). By using the method of proof by contrapositive, prove that if $2|n^3$, then 2|n. 20%
- Q3. a). Let $x, y \in \mathbb{R}$. Using the method of proof by contradiction, prove that $\forall x \forall y \left(6x + 5y > 5 \Rightarrow \left(x > \frac{8}{7} \lor y > \frac{7}{15} \right) \right).$
 - b). By using the principle of mathematical induction, prove that $8^{n+1} + 9^{2n-1}$ is 30% divisible by 73.
 - c). Using the proof by case, show that $2n^2 + 5n + 4$ is not divisible by 3, when $n \in \mathbb{Z}$.

Section - B

- Q4. a). If a SOP (sum of products) of a Boolean function F(x, y, z) is given by $F(x, y, z) = \bar{x}\bar{y}\bar{z} + \bar{x}\bar{y}z + \bar{x}y\bar{z} + x\bar{y}\bar{z} + xyz$
 - i). Construct the truth table for F(x, y, z).
 - ii). Construct corresponding Karnaugh map for the above truth table. Indicate the SOP groups to minimize F(x, y, z).
 - iii). Using Karnaugh map, find the minimized expression for F(x, y, z).
 - **b).** Using laws of Boolean algebra, prove that $\bar{x}\bar{y}\bar{z} + \bar{x}\bar{y}z + \bar{x}y\bar{z} + x\bar{y}\bar{z} + xyz = \bar{x}\bar{y} + \bar{y}\bar{z} + \bar{x}\bar{z} + xyz.$
 - c). Using laws of Boolean algebra, minimize the following expressions.
 - i). $F_1(x,y) = (\bar{x} + y)(\bar{x} + \bar{y})$
 - ii). $F_2(x, y, z) = \overline{(x+y)}z + \overline{x}yz + x\overline{y}$

Q5. a). Find the domain of each of the following real-valued functions:

30%

i).
$$f(x) = \frac{(x-1)(x-2)}{x^2+11x+30}$$
.

ii).
$$g(x) = \frac{x^2 + 25}{\sqrt{x^2 - 25}}$$
.

b). Let the function $f : \mathbb{R} \to \mathbb{R}$ be defined as follows:

15%

$$f(x) = \begin{cases} x^2 + 2x - 3, & \text{if } x \le -3\\ x^2 + 4, & \text{if } -3 < x \le 5\\ x^2 - 2x + 3, & \text{if } 5 < x \end{cases}$$

Find the values of f(-3), f(0) and f(6).

c). Let $A = \mathbb{R} - \left\{-\frac{3}{4}\right\}$ and $B = \mathbb{R} - \left\{\frac{5}{4}\right\}$. The function f is defined as

35%

follows.
$$f: A \to B$$
 and $f(x) = \frac{5x + 7}{4x + 3}$.

- i). Show that f is one to one function.
- ii). Show that f is on to function.
- iii). Find the inverse function of f.
- d). The real valued functions f and g are defined as f(x) = 2x + 5 and

20%

$$g(x) = x^2 + 2x + 5$$
. Find $f \circ g$ and $g \circ f$.

O6. a). Express the following sets in Roster form.

20%

i).
$$A = \{x: 8 + x = 5; x \in \mathbb{N}\}.$$

ii).
$$B = \{x: 0 < |x-2| < 3, x \in \mathbb{Z}\}$$

b). Express the following sets in Builder form.

20%

i).
$$X = \{-1, 1, 3, 5, 7, 9 \dots \}$$
 with \mathbb{N} .

ii).
$$X = \{-1, 1, 3, 5, 7, 9 \dots \dots \}$$
 with \mathbb{Z}^+ .

c). Let A, B and C be any subsets of a universal set S.

30%

- i). Using the method of contradiction, prove that $(A C) \cap (C B) = \emptyset$
- ii). Show that, $(B A) \cup (C A) = (B \cup C) A$ without using Venn Diagrams.
- **d).** Let $A = \{3, 5, 7\}$ and $B = \{2, 4\}$.

30%

- i). Find $A \times B$ and $B \times A$.
- ii). Let $R = \{(3,4), (5,4), (7,4)\}$. Is R a relation from A to B or B to A? Justify your answer.

a). Find the complex roots of $\sqrt{9+40i}$. Hence, solve the quadratic equation 40% Q7. $x^2 + 2ix - 10 - 40i = 0$.

b). Let
$$P(x) = x^4 - 5x^3 + 7x^2 - 5x + 6$$
.

- i). Show that x + i and x i are factors of P(x).
- ii). Hence solve the equation P(x) = 0.
- c). Write down a quadratic equation of the form $ax^2 + bx + c = 0$, satisfying the 35% three conditions, where a, b, c are non-zero, $b^2 - 4ac > 0$ and the roots are imaginary numbers. Justify your answer.

Hint: The roots of the quadratic equation of the form $ax^2 + bx + c = 0$ are given by

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, \text{ where } a \neq 0.$$

a). Let $z, z_1, z_2 \in \mathbb{C}$. Prove that the following results. Q8.

i).
$$z\bar{z}=|z|^2$$

i).
$$z\overline{z} = |z|^2$$
 ii). $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$ iii). $\overline{z_1}\overline{z_2} = \overline{z_1}\overline{z_2}$

- vi). $z + \bar{z} = 2Re(z)$ v). $\bar{z} = z$
- vi). Re(-z) = -Re(z)
- **b).** Using the above results, prove that $|z_1 + z_2|^2 = |z_1|^2 + |z_2|^2 + 2Re(z_1\bar{z_2})$. 40% Deduce that $|z_1 + z_2|^2 + |z_1 - z_2|^2 = 2(|z_1|^2 + |z_2|^2)$. Find the geometrical interpretation of $|z_1 + z_2|^2 + |z_1 - z_2|^2 = 2(|z_1|^2 + |z_2|^2)$.
- The complex numbers $2\left(\cos\frac{\pi}{12} + i\sin\frac{\pi}{12}\right)$ and $2\left(\cos\frac{5\pi}{12} + i\sin\frac{5\pi}{12}\right)$ 30% represents by the points P_1 and P_2 in an Argand plane. Show that OP_1P_2 is a equilateral triangle, where O is the origin of the Argand plane.
- 20% a). Let z = -12 + 5i. Find the |z|, Arg(z) and arg(z). O9.
 - b). Prove that the roots of the equation $z^3 = -8$ can be expressed as 30% $2(\cos\pi + i\sin\pi), 2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$ and $2\left(\cos\left(-\frac{\pi}{3}\right) + i\sin\left(-\frac{\pi}{3}\right)\right)$
 - 50% c). If $z_1 = \frac{1+\sqrt{3}i}{\sqrt{2}+i}$ and $z_2 = \frac{-1+3i}{1+2i}$, then express z_1, z_2 and $\frac{z_2}{z_1}$ of the form a+ib and $r(\cos\theta+i\sin\theta)$, where $a,b\in\mathbb{R}$ and r>0, $-\pi<\theta\leq\pi$.

Hence, prove that $\sin \frac{\pi}{12} = \frac{\sqrt{6} - \sqrt{2}}{4}$ and $\cos \frac{\pi}{12} = \frac{\sqrt{6} + \sqrt{2}}{4}$.

End -Copyright Reserved -