The Open Umversﬂy of Sri Lanka
Faculty of Engmeermg Technology

Department of Electrlcal and Computer

Engmeermg
- Study Programme . : Bachelor of Software Engineering Honours \
Name of the Examination :Final Examination
Course Code and Title ' : EEX5376 Embedded Systems and IoT
Academic Year :2023/24
Date - :25™anuary 2025
Time ~:930-1230hrs

\Duration : 3 hours | /

General Instructions |
1. Read all instructions carefully before answering the questions.

2. This question paper contains three (3) quest’ilo‘ps in SECTION A and three (3)
questions in SECTION B on ﬁve (5) pages.

3. Answer all questions in SFC TION A.[60 Mdl‘kS] and answer any Two
questions from SECTION B, [40 Marks].

4. Answer for each question should commence from a new page.

5. Refer to the Annexure of the Arduino programming syntax given on page
four (4) to write anArduino programming code

6. This is a Closed Book Test(CBT).
7. Answers should be in clear handwriting.

8. Do not use Red colour pen.

Section A:Answer ALL questions [60 Marks]

The following description is about the Smart Parking Management System (SPMS). Your
task is to analyse the following specifications and design the SPMS by Providing loT
solutions for a smart city. :

A Smart Parking Management System (SPMS) integrates hardware and software components
to efficiently manage and monitor parking areas. By leveraging interconnected devices and
parking management applications, SPMS automates various processes, including entry and
exit control, payment collection, slot allocation, and security monitoring. The primary
objectives of such a system are to optimise parking slot utilisation, reduce congestion, and
enhance the overall user experience. By digitisiﬁg and automating manual tasks, SPMS
replaces traditional parking systems, improving efficiency and accuracy.

The hardware components of the system include access control devices such as barriers,
gates, ticket dispensers, vehicle identification systems, and payment stations. These
components collaborate to regulate access, issue tickets or digital passes, and facilitate
payment transactions seamlessly.

Implementing an loT-based SPMS in Sri Lanka, where there are approximately 900,000
registered motor cars, can significantly improve transportation infrastructure. Such a system
utilises real-time data to deliver key features, including: Parking Access Control, Real-Time
Parking Guidance, Reservations, Digital Payments, Vehicle Detection and Tracking,
Intelligent Analytics and Reporting.

The system also streamlines the entry and exit process. Dedicated entry and exit points are
equipped with sensors to detect vehicle presence, identification devices to verify access, and
barrier gates to control flow. Once a vehicle passes through, sensors close the gates
automatically. In emergencies, the system can guide vehicles to selected exit gates and
automatically open them for evacuation.

Parking facilities will include designated areas for disabled individuals, private parking,
public parking, and EV charging. Access to these areas will be based on real-time parking
slot availability. Additionally, data collected at the central station enables the prediction of
usage trends, empowering parking managers to optimise operations and enhance revenue
generation.

Propose a design for the SPMS by executing an IoT solution to provide better transportation
to everyone. Accordingly, answer the following questions.

[Q1]

From the global perspective,draw an edge-fog-cloud IoT architecture diagram for the
proposed SPMS solution and provide brief explanation. Clearly indicate what the edge
devices, gateways, fog devices, connectivity, cloud services, and applications are.

[16 Marks]

[Q2]

Draw the following diagrams for the entry and exit process of the SPMS solution and

briefly explain each. ‘ : [32 Marks]
(1) Process specification diagram.
(il) Domain model specification diagram.
(i) Information model specification diagram
(iv) Service specification diagram
[Q3]

[Q4]
(@

(1))

[Q5)
(1)
(ii)

“(iii)

[Q6]
M
(ii)

(iii)

Briefly explain three security concerns related to the proposed SPMS solution and the
steps that could be taken to mitigate them’ [12 Marks]

SECTION B: Answer any TWO questions. {40 Marks]

Create a flow chart for the entry and exit process in the proposed SPMS solution,
considering a sampling rate of 5-second intervals.

[10 Marks]
Refer to the Arduino programming instructions and write a program for the Q4.(i)
process. State the comments where necessary.

[10 Marks]
Briefly describe the SPMS 10T solution from a global context. [4 Marks]
Briefly describe three (3) challenges faced when applying the IoT concept to the
SPMS application. [6 Marks]

Draw the block diagram and briefly describe the distributed view of the data
processing architecture of the proposed SPMS loT application. (Hint: Should
discuss the types of data used in each level or layer, type of data analysis, and
level or layer where it applied)

[10 Marks]
Compare the edge, fog, and cloud computing. [4 Marks]
Compare and contrast the MQTT, COAP, and HTTP data transfer protocols and
justify data transfer selection for the proposed SPMS solution. [8 Marks]

Briefly explain three (03) lightweight data transfer techniques for your proposed
SPMS solution.(hint: should be discussed about techniques of Payload
minimisation, Data aggregation, Data compression, etc...).

[8 Marks]

Annexure

Syntax of selected instructions of the Arduino programming

Structure & Flow

Basic program structure
void setup () {
// Runs once when sketch starts
!
f
void loop () {
//Runs repeatedly

}

Control Structures
Hx<5){..... }else {...... }
while (x <5) {...... }
for (inti=0;1<10; 1+4+) {...... }
break; /1 Exit a loop immediately
continue; // Go to next iteration
switch (var) {
case 1:
break;

case 2;
break;

default:

}

returnx; // x must match return type
return; // For void return type

Function Definitions
<ret. type><name> (params) {......}
e.g int double (int x) {return x*2;}

!

Operators
General operators
= assignment
+ add - subtract
* multiply o divide
% modulo
== equal to = notequal to
<less than > greater than
<= less than or equal to
>= greater than or equal to
&& and I or

not

Compound operators

-

-
&=
|::

&

A

<<

&

%

incrernent

decrement

compound addition
compound subtraction

compound multiplication
compound division
compound bitwise and
compound bitwise or

Bitwise Operators

bitwise or
bitwise not
shift right

bitwise and |
bitwise xor ~

shift left >

Pointer Access

reference: get a pointer
dereference: follow a pointer

Variables, Arrays, and Data

Data types

bool true | false

char -128 - 127, ‘2’ ‘§
unsigned char 0 - 255

byte 0 - 255

int . -32768 - 32767
unsigned int 0 - 65535
word 0 -~ 65535

long -2147483648 — 2147483647
unsigned long 0 — 4294967295
float -3.4028e¢+38 — 3.4028e+38

double currently same as float
void return type: no return value

Strings
char str1{8] =
(A, 0, d, D, w0, ‘0, N0
// Includes \O null termination
char str2[8] ==
A, o d, o, P, ', o0,
/ICompiler adds null termination
char str3[} = “Arduino™;
char str4{8} = “Arduino”;

etc.

Numeric Constants

123 decimal
0b01111011 binary

0173 octal — base 8
0x7B hexadecimal -~ base 16

123U force unsigned

123L force long

123UL force unsigned long
123.0force floating point

1.23e61.23*¥10%6 = 1230000
Qualifiers
Static persists between calls

volatilein RAM (nice for ISR)
const read-only

PROGMEMin flash
Arrays
byte mypins {] = {2,4,8,3,6};
int mylnts [6]; // Array of 6 ints
mylnts[0] = 42; /I Assigning first
// Tndex of mylnts
mylInts[6] = 12; /l ERROR1 Indexes
/! are O though 5

Built — in Functions

Pin Inpat / Output

Digital /O — pins0—-13 A0 — A5
PinMode(pin,

{ INPUT | OUTPUT | INOUT_PULLUP})
int digitalRead(pin)

digital Write(pin, {HIGH | LOW})

Analog In ~ pins A0 — AS

Int analogRead (pin)

analogReference(

{DEFAULT | INTERNAL | EXTERNAL})

PWM Out —pins 3569 10 11
analogWrite(pin, value) // 0-255

Advanced 1/O

tone(pint, freqHz, [duration_msec])
noTone(pin)

shiftOut(dataPin, clockPin,
{MSBFIRST | LSBFIRST}, value)
shiftIn(dataPin, clockPin,
{MSBFIRST | LSBFIRST})
unsigned long pulseIn{pin,

{HIGH | LOW}, [timeout_usec])

Time
unsigned long millis()

/l overflows at 50 days
unsigned long micros()

/! overflow at 70 minutes

Math

min(x, y)ymax(x, y) abs(x)
sin(rad) cos(rad) tan(rad)

sqrt(x) pow(base, exponent)
constain(x, minval, maxval)
map(val, fromL, fromH, toL, toH)

Random Numbers
randomSeed(seed) // long or int
long random(max) // 0 to max-1
long random(min, max)

Bits and Bytes

lowByte(x) highByte(x)
bitRead(x, bitn)

bitWrite(x, bitn, bit)

bitSet(x, bitn)

bitClear(x, bitn)

bit(bitn) // bitn: 0=LSB 7=MSB

Type Conversions
char(val)byte(val)
int(val) word(val)

long(val) float(val)

External Interrupts
attachInterrrupt(interrupt, func,

{LOW | CHANGE | RISING | FALLING})
detachInterrupt(interrupt)

interrupts()
delay(msec) noInterrupts()
delayMicroseconds(usec)
Libraries

serial ~ comm.with pc or via RX/TX
begin(long speed) // up to 115200
end()

int available() // #bytes available
int read()// -1 if none available
int peek() // Read w/o removing
flush()

print(data)printin(data)
write(byte) write(char*string)
write(byte*data, size)
serialEvent() // called if data rdy

softwareSerial.h — comm. on any pin
softwareSerial (rxpin, txpin)
begin(long speed) // upto 115200
listen() // only1 can listen
isListening() // ataitme.
read, peek, print, printin, write

// Equivalent to serial library

EEPROM.h — access non-voLatile memory
byte read(addr)

write(addr, byte)

EEPROM[index] // Access as array

Servo.h — control servo motors -
attach(pin, [min_usec, max_usec))
write(angle)// 0 to 180
writeMicroseconds(us)

/I 1000-2000; 1500 is midpoint
int read()// 0to 180
bool attached()
detach()

wire.h — I C communication

begin() / Join a master
begin(addr) / Join a salve @ addr
requestFrom(address, count)
beginTransmission(addr) // step 1
send(byte) // step 2
send(char*string)

send(byte*data, size)
endTransmission() // step 3

int avaialable() // #bytes available
byte receiver() // get next byte
onReceive(handler)
onRequest(handler)

